
Bachelor Thesis

Performance Assessment of Metadata
Management with Di�erent Databases

in a FUSE File System

Martin Barthel
martin.barthel@st.ovgu.de

April 3, 2023

First Reviewer:
Jun.-Prof. Dr. Michael Kuhn

Second Reviewer:
Michael Blesel

Supervisor:
Jun.-Prof. Dr. Michael Kuhn and Michael Blesel

mailto:martin.barthel@st.ovgu.de

Abstract

File systems not only hold the information inside a �le but also information describing the
entry, known as metadata. As several use cases like HPC raise the desire to make use of existing
technologies able to be accessed frommultiple machines and capable of managing large amounts
of data, databases are a likely candidate as metadata storage solution. However, many categories
of databases have been implemented over the years. Examples are key value stores, relational
databases, graph databases and triple stores [Meier and Kaufmann, 2019]. This prompts the
question which class should be picked. To provide arguments for that decision, an existing
�le system implementation is picked. This is provided by julea-fuse which already uses key
value stores [Kuhn, 2017]. julea-fuse is located within the JULEA-Framework. As the other
metadata backend provided by it are relational databases, this is the obvious choice for the
second database type to be evaluated. julea-fuse binds to the fuse library to support existing
POSIX compliant applications while running in user space. To be able to support both backends
via highly similar code an interface is created to hide their speci�cs. It is then evaluated whether
julea-fuse completes common �le system requests faster when using the key value store or
the relational database. This is done via mdbench [kofemann et al., 2022]. There the key value
store appears to be faster than the relational database across the evaluated methods. Hence the
implied takeaway is that with the used �le system structure, key value stores are the better
storage backends for �le system metadata in terms of latency.

Contents

1. Introduction 4
1.1. Motivation . 4
1.2. Structure of the Thesis . 5

2. Background 6
2.1. File Systems . 6
2.2. POSIX . 7
2.3. Fuse . 9
2.4. Databases . 11

2.4.1. Key Value Store . 11
2.4.2. Relational Databases . 11

2.5. JULEA . 13

3. Implementation 15
3.1. Added Functionality . 15
3.2. Metadata . 16
3.3. Abstraction . 17
3.4. Synchronization . 21
3.5. Access Control . 22
3.6. High Level Interface . 23
3.7. Pathname Mapping . 23
3.8. Statefulness . 25
3.9. File Content . 26
3.10. Directories . 26

4. Related Work 28

5. Evaluation 31
5.1. Setup . 31
5.2. Measurements . 31

5.2.1. Operations on Regular Files . 31
5.2.2. Operations on Directories . 35

5.3. Implications . 37

6. Conclusion 38
6.1. Conclusion . 38
6.2. Future Work . 39

Bibliography 41

3

Chapter 1.

Introduction

In this chapter, �rst it is pointed out why the comparison of the performance of relational databases
and key value stores as metadata backend is required. Afterwards the structure of this thesis is
explained.

1.1. Motivation

As processor development followedMoore’s law formany years their capabilities have grown[Eeckhout, 2017].
Although some imply that it is probably slowing down. However, it has lead to increasingly ca-
pable chips being merged into supercomputers. The supercomputer with the most �oating point
operations per second as in November 2022, Frontier, is able to access Orion [Top500, 2022]
[OLCF, 2023]. This is a �le system �tted with 679 Petabytes of hard drives. However, �le
systems also need to keep data to manage the �le content, so called metadata. Regarding that,
[Alam et al., 2011] speak of a "metadata wall". They point out that in their system, metadata
operations per second do not increase with more concurrent accesses as desired. Others en-
countered similar problems. [Luu et al., 2015] evaluated 1,080,262 runs of di�erent applications
from three supercomputers. The overall duration of the operations on �le content and those
on metadata were compared in their case. Metadata interactions outweighed the other type
in 2 out of 5 of the runs. Before that, [Carns et al., 2011] analyzed 10 projects on the Intrepid
supercomputer. During this, in 6 projects calls metadata related took longer than functions on
�le content. In one instance 95% of the duration of the �le system calls is generated by metadata
operations. As the authors note, some of the imbalance could be explained by counting a
function which may issues content manipulation as metadata only. However still a lot of time
is required for metadata operations. This probably is undesired as mostly the actual �le content
is what is of interest by the user.

Therefore improvement to the costs of metadata operations is desirable, especially on scale.
Systems that handle large amounts of data entries everyday are for example databases. MySQL
for instance is able to handle at least 5 billion entries in an entire instance [MySQL, 2023c]. Mon-
goDB as NoSQL-database has a deployment with overall 200 billion entries [mongodb, 2023].
Those typically provide user space librarieswhich become accessible via fuse [Vangoor et al., 2017].
As referenced in Chapter 4, �le systems which use databases for their metadata already exist.
However this thesis is concerned with adding a second database type to an existing fuse �le
system. Namely the �le system concerned - julea-fuse - already uses key value stores as backend
for the information it saves additionally to the �le content. In this thesis a way of storing
this data in a relational database is added. By doing this, the di�erent performances of both

4

databases in terms of latency will become clear. Hence future �le system designers can pick
a storage solution which suits their needs best. The database systems will be evaluated by
comparing their performances at di�erent tasks. Therefore it becomes apparent how much the
time needed deviates between the di�erent �le operations. It is found that requests using key
value stores consistently complete faster than those relying on relational databases. This might
be in�uenced by the �le system layout chosen

1.2. Structure of the Thesis

In order to bring this information across, �rst concepts of classical �le systems will be discussed .
Furthermore an important interface - POSIX -will be described and the fuse librarywhich is used
to export it to the user will be broken down. As there are two database types available through
the JULEA-Framework, both the aims of the databases and the structure of the framework
is required to be clari�ed. After that the design underlying the changes to the fuse library
will be laid out. During this, especially the metadata collected is of interest. Before that, the
general changes will be summarized. Then it is discussed how an abstraction was introduced
in order to hide the speci�c details of the implementation. Moreover the consequences of the
new metadata are discussed. Of special interest is the pathname resolution and consequently
the mapping of �le names to objects. After this, some �le systems which also use databases for
metadata storage are discussed. Consequently, operations on �les and directories are compared
between di�erent databases and database types. Afterwards a suggestion on which database
technology to use for �le system metadata is given. Finally aspects of �le system metadata
management in databases which are worthwile evaluation are presented.

Summary

As metadata performance often holds back �le systems in a HPC context, ways of optimizing
its organization are necessary. This can be done for example by utilizing existing systems
for metadata management such as relational databases and key value stores. In the following
thesis a �le system is described which can utilize both types and hence is able to be used to
compare their performance. Its layout and the evaluation is discussed following the depicted
structure.

5

Chapter 2.

Background

In this chapter, an overview is given on the components in a �le system. Then POSIX as an interface
to manipulate those is discussed. As being the way to provide a custom �le system used in thesis,
the internal structure of fuse is explained. This thesis compares relational databases with key value
databases. Because of that information about their interfaces and some internals are given. Finally
JULEA provides the framework to interact with the two types of databases

2.1. File Systems

/

dir3 dir4 dir5

link1

dir1

�le2 dir2

�le1

Figure 2.1.: example organization of �le system entries

At some pointmost software uses a �le system in someway for various reasons [Andrew S et al., 2015].
A File System keeps data needed beyond the execution of a program. Furthermore data con-
tained in it exceeds usually the size allowed by the RAM. Its entries are not bound to one
running program.

When using Linux, �les as the entities in a �le system fall under multiple distinct categories
[Andrew S et al., 2015]. Files of every type are identi�ed by a name.

Regular �le refers to an entity the actual data is written to or retrieved from [Andrew S et al., 2015].
Examples for those are file1 and file2 in Figure 2.1. Their content needs only to be under-
stood by the applications using the �le. This is not a concern of the �le system. Besides storing
the data inside a �le, �le systems also gather information beyond that for every entry. This
metadata incorporates for example the length of a �le. Other possible settings found there
are its visibility or the date its generation happened. As �le systems usually reside on hard
drives, the so called index node also features information concerning the distribution of the
�les content. Therefore it possesses a catalog of disk blocks containing the �le content. It is
also able to reference several others of such catalogs. This is deployed in case no entries are
left in the �rst one.

Index nodes exist for every �le not just for regular �les [Andrew S et al., 2015].

6

File system entries which arrange others are called directories [Andrew S et al., 2015]. A
directory might itself lay inside a higher directory like dir2 is in dir1 as pictured in Figure 2.1.
Data about included �les lays in the directories data structure. In the example file2 and dir4

are registered in dir1’s list. This is used for resolving paths. A slash splits paths into �le system
entry names. By choosing one entry after another the desired �le is arrived at upon the last
part. The path /dir1/dir2 is processed by �rst getting the entry of dir1 in /. After that dir2
can be located in the entry list of dir1. As this is the last section of the path, the resolution has
�nished then.

All in all, this results in a directory tree as depicted in Figure 2.1[Andrew S et al., 2015].

Another component of �le systems are links [Andrew S et al., 2015]. Through hard links a �le
can be referenced by di�erent paths. In Figure 2.1, link1 represents a hard link. Through that
/dir3/link1, /dir4/link1 and /dir5/link1 point to the same �le. In contrast a symbolic
link stores its actual target in itself which is then resolved for �le operations on the link.

Other categories like character special �les or block special �les exist aswell [Andrew S et al., 2015].

2.2. POSIX

POSIX is spelled out as "Portable Operating System Interface" [IEEE and Group, 2018]. By POSIX
method signatures and properties are laid out which can be expected by programs abiding
by them. Thereby it provides a guideline for software like a �le system wishing to provide
compatibility with existing applications. While doing so, it is geared towards UNIX. POSIX
contains the codes that are passed back by methods if a problem is encountered and which
are appropriate for a method. For example they de�ne what happens if a �le does not exist
when chmod is invoked. The implementation of the standard does not in every case relieve of
recompilation. It also codi�es aspects of the terminal and certain applications.

From a �le system perspective, general aspects of its interface are laid out [IEEE and Group, 2018].
For instance the grammar which path names follow is set. Moreover objects in a �le system are
de�ned, namely �le, link and directory. Together those should form a directed graph according
to POSIX. The pathname resolution mechanism and its properties are also de�ned. It sets how
symbolic links are handled and the steps when loops are known to be created by them. POSIX
lays out the behavior of methods often applied on �les. For example open is de�ned. Some
methods can only be called after open [Andrew S et al., 2015]. That is because on running the
method necessary information for e.g. read is cached. creat behaves similarly except it being
used for new �les. write puts new content into a regular �le or alters it. To load this from the
�le, read is available. chmod and chown impact the permissions of user accounts on the �le. If a
di�erent path than the old one should point to it, this can be accomplished by rename. unlink
gets rid of no longer needed �les, it could be seen as the opposite of creat. fstat provides the
metadata as described in Table 2.1 of the �le to the caller. Special for directory �les are mkdir,
readdir and rmdir. mkdir and rmdir are like creat and unlink are for other �les. If a program
needs to list all directory contents it can use readdir.

In addition, it describes the metadata expected by it [IEEE and Group, 2018]. General metadata
components can be gathered from sys/stat.h. An overview of those can be seen in Table 2.1.
In Listing 2.1 an example output of stat is visible providing possible values for stat’s entries.
st_dev de�nes a selector of the medium concerned. As seen in line 3, example lies on 0,38.

7

entry
st_dev
st_ino
st_mode
st_nlink
st_uid
st_gid
st_rdev
st_size
st_atim
st_mtim
st_ctim
st_blksize
st_blocks

Table 2.1.: stat structure

To tell the entries apart the st_ino is used which is 933507 in Listing 2.1. This is bound to the
current �le system as it is not operating system wide valid. The category of the �le system
entry is de�ned in st_mode. For example metadata can be distinguished between directories and
regular �les by it. In Table 2.1 example is a regular �le. Furthermore operations are approved
or denied to happen by the operating system depending on st_mode. These can be given on
multiple levels. The account the �le belongs to as given by the number in st_uid might has
di�erent permissions than the group which is determined by st_gid is granted. example belongs
to uid 1000, martin, and gid 10, wheel, as seen in line 4. Account martin is able to read, write
and execute the �le. Members of wheel can read and write it. The �nal level in st_mode de�nes
the rights of any one else for the �le. In Listing 2.1 those can view the contents. In case the
metadata is assigned to a special �le, st_rdev is required. st_nlink counts the references by
di�erent directory entries to this particular index node which is one as seen in line 3. st_size
stores the amount of the data. The unit used is bytes. As seen in line 2, example incorporates
391 bytes of data. st_blksize and st_blocks both concern disc blocks. The �rst suggests an
optimal length for those. By the latter the ones belonging to the �le are counted. example
covers 8 blocks. The temporal information collection at methods for �les is de�ned. In contrast
to the other values which are whole numbers the time is captured via a timespec. This C-struct
consists of a number for nanoseconds and one for seconds. Three moments are relevant as
metadata. The most recent retrieval of the �le content is written to st_atim. If alterations
occurred this is stored in st_mtim. st_ctim changes for example when chmod or chown are
called. Additional to the metadata contents required by POSIX, Table 2.1 also contains the birth
and the context of the �le as seen in line 5 and 9.

1 File: example

2 Size: 391 Blocks: 8 IO Block: 4096 regular

↩→ file

3 Device: 0,38 Inode: 933507 Links: 1

4 Access: (0764/ -rwxrw -r--) Uid: (1000/ martin) Gid: (10/

↩→ wheel)

5 Context: unconfined_u:object_r:user_home_t:s0

6 Access: 2022 -01 -10 11:25:16.103340328 +0100

7 Modify: 2022 -01 -10 10:24:56.278402473 +0100

8

8 Change: 2022 -01 -10 12:26:13.475160489 +0100

9 Birth: 2022 -01 -10 10:24:56.278402473 +0100

Listing 2.1: output of running stat example in bash

2.3. Fuse

Ring 3

Ring 2

Ring 1

Ring 0

Kernel

Device drivers

Device drivers

Applications

Least privileged

Most privileged

Figure 2.2.: Modes for code to run on[Hertzsprung, 2007]

Classic �le systems under Linux like Ext4 bind to VFS [Andrew S et al., 2015]. In order to enable
that, the VFS Interface needs to be implemented. If user space software uses a �le it emits an
interrupt. In the terms of Figure 2.2 it changes from the outermost layer to the innermost layer.
In the kernel, the �le’s �le system is looked up. Afterwards, the operating system executes
the method registered for this type of interaction. VFS and the �le system usually respond to
interrupts staying in ring 0. Afterwards the caller in the outer layer in Figure 2.2 proceeds with
restricted hardware access again.

Fuse however enables programmers to create a �le system that runs in usermode [Vangoor et al., 2017].
Hence many hassles are taken out of the way for writing new �le systems. Developers are
used to the environment. In case of a fault in the implementation the operating system keeps
running. It only e�ects the �le system. Therefore it can be easily run again. Contributing
to another bene�t of fuse is that interactions with third party software usually occur in ring
3. Therefore their use is possible via fuse whereas for example binding to libjulea could be
impossible in the kernel. Additionally on the positive side, it is possible for accounts other then
the superuser to run a fuse program [fuse, 2023b][ubuntusers, 2021]. Therefore �le systems
become usable for them without contacting an admin. A major disadvantage of the usage of
fuse is that context switches are costly in terms of time. Implementations inside the kernel
can avoid that. In order to not be implemented in the kernel, fuse is split into two parts: one
that runs in ring 0 and one running in ring 3. The �rst piece of software passes an interface to
VFS. The second program handles commands it receives from the �rst. The communication is
carried out via a block device. It is referenced as /dev/block.

In order to complete an operation in a fuse �le system, the following steps are needed
[Vangoor et al., 2017]: First an software interrupt is triggered from user land. In Figure 2.3 this
is done by the ls program via libc. In the kernel the Virtual File System passes the call to the

9

libfuse

libclibc

FUSE

Ext3

...

VFS

ls -l /tmp/fuse

./hello /tmp/fuse

Kernel

Userspace

NFS

Figure 2.3.: example call in fuse[Sven and ElementW, 2019]

fuse module as this is the �le system responsible for the �le /tmp/fuse. Synchronous calls are
enqueued in a FIFO list called pending, other calls go to background before this happens. The
directory contents are read synchronously, so it is inserted in pending. After that, /dev/fuse
is written to from the kernel module. It is marked in green in Figure 2.3. Other mounted
�le systems in this graphic appear to be NFS and Ext3. Those might be called by the VFS
for other �les in di�erent locations. In /dev/fuse, sequence numbers distinguish the separate
calls. In a call the node ID maps it to an index node. Furthermore the call changes into the
processing list. At some point in time the instruction in fuses format is picked up by the fuse
daemon. The daemon is called libfuse and marked light green in Figure 2.3. It interacts with
/dev/fuse via libc. /dev/fuse can be seen as the means to pass the border between Kernel and
Userspace in Figure 2.3. The fuse daemon then runs the implementation of the method the
speci�c �le system has passed to it. In the example the function to list the directory contents
with their metadata. The concurrent handling of calls is possible, for example to list another
directory at the same time. If enabled a single call is assigned per thread. Afterwards it sends
the information of completion of the call with the speci�c sequence number via /dev/fuse
to the kernel module as it is symbolized by the returning arrow. The fuse module can then
dequeue the call from the processing list. Additionally to those lists it keeps others. From those,
interrupt is relevant if a calls execution is obsolete. Finally the kernel can return to user space
and the calling program can continue. In Figure 2.3 the VFS returns from the call to FUSE. In
userspace the function provided by libc returns. Therefore, ls can proceed to list the contents
of /tmp/fuse on the terminal interface.

Programmersmay choose from two interfaces [Vangoor et al., 2017][libfuse, 2023b][libfuse, 2023a].
The �rst one, fuse_operations , provides the path as string or an integer - the �le handle - to
identify the �le the operation should manipulate. It itself relies on �le_lowlevel_ops . �le_-
lowlevel_ops distinguishes between �les by index nodes.

10

2.4. Databases

2.4.1. Key Value Store

In a key value store entries are distinguished by keys [Wiese, 2015]. The other entry component
is the value. Entries can be inserted into the database. Then the content can be queried. The
last standard procedure is deleting the entry. The key value store is not concerned with the
insides of the value. It can be anything especially a char array. It is treated as raw chunk of
data. The key value store is hence referenced as schemaless.

Key value stores come very close to document stores [Wiese, 2015]. In the latter, the data
attached to the key follows a grammar like given by xml, json or bson.

In contrast to the following database technology multiple machines can be organized together
for a database [Meier and Kaufmann, 2019]. Even their online status can change dynamically.
The allocation to computers relies on consistent hashing. The data structure on one of these is
then also geared towards the hash of the identi�er of the value.

key value

"/folder/example"

{

"st_mode": 33268,

"st_ino": 933507 ,

"st_dev": 38,

"st_nlink": 1,

"st_uid": 1000,

"st_gid": 10,

"st_size": 391

}

"/folder"

{

"st_mode": 16877,

"st_ino": 287,

"st_dev": 38,

"st_nlink": 1,

"st_uid": 1000,

"st_gid": 1000,

"entries": [933507]

}

Table 2.2.: Two example entries in an key value store. example is referenced via "/folder/exam-
ple" and folder’s value can be accessed via "/folder". Json is used for encoding the
values. In the graphic, example has a st_size entry whereas this is skipped in folder.
In contrast, folder provides a list of entries in the value "entries".

2.4.2. Relational Databases

Another class of databases are relational databases [Meier and Kaufmann, 2019]. The organiza-
tion of it di�ers form key value stores. A similar concept to the key value pair in the previous

11

database type is represented by the tuple [Saake, 2018]. This is assigned to a table respectively
a relation. In contrast to key value stores, what makes up an entry is clearly de�ned beforehand.
This is carried out on a per relation basis. Each of the relation’s tuples exhibits the attributes
given in this prede�ned schema. One or more relations are collected within an instance. An
interaction with relations from the outside is usually carried out by formulating the desired
instructions in SQL. Another key aspect of both this database class and SQL is the relational
algebra. It contains unary and binary functions. Their arguments and results are collections
of entries as suggested by the name of the algebra. By that a table with regular �les in a
speci�c directory can be generated from a table containing all �les like regular_�les in Table 2.3
via "SELECT * FROM regular_files WHERE folder=287;". Another example for relational
algebra would be to only output name, group and owner of entries via "SELECT st_name,

st_gid, st_uid FROM regular_files;". Moreover from relational algebra a single list might
be generated from a list of directories and a list of regular �les inside them with "SELECT *

FROM regular_files JOIN directories ON regular_files.folder=directories.st_ino;".
These functions are referred to as selection, projection and join. All in all, when retrieving
data from relational databases a much richer interface is provided then in key value stores.
Like key value stores, relational databases provide several possibilities to change content in an
database instance. In contrast to the former those instructions can be directed at more then
one entry. The database can be instructed to remove rows. This can happen e.g. via "DELETE
FROM regular_files WHERE st_name=’example’;". Of course the user was able to add those
rows to the database before via the sql interface provided with statements such as "INSERT
INTO directories VALUES (’folder’,287,169877,1,1000,1000,0);". Information within
rows can be altered hence not needing to rewrite the entire object. An example for that is
"UPDATE directories SET st_name=’dir’ WHERE st_ino=287;". It only sets the st_ino to
287. Relational databases assure the ful�llment of certain points to the user. Those are usually
summarized as Atomicity, Consistency, Isolation and Durability. The ACID stands for this.
Those are directed towards transactions. Through them, after executing the latter the instance
does not show remains of a partial, failed execution and still conforms to given rules. The
database hides the e�ects of concurrent access from the user and queries after the execution
keep returning its state. B-trees usually lead to a desired tuple within relational databases. The
instance generates them usually for indizes. An index could be the inode number as tuples
might be often referred by it.

regular_�les
st_name st_ino st_mode st_nlink st_uid st_gid st_size folder
example 933507 33268 1 1000 10 391 287

directories
st_name st_ino st_mode st_nlink st_uid st_gid folder
folder 287 169877 1 1000 1000 0

Table 2.3.: example relational database

12

2.5. JULEA

JULEA facilitates several ways to manage persistent data while being aimed especially at HPC
applications [Kuhn, 2017][Kuhn, 2015]. If new technology in this realm concerning �le systems
is to be assessed building everything from the ground up would consume many resources.
JULEA tries to mitigate that. This is done by providing several often required parts. Those can
then be used together as desired in the speci�c application.

JULEA shipswith an application library, a server and certain targets which store the information[Kuhn, 2017][Kuhn, 2015].
The last part, the backend, provides an generic interface for the server to use key value stores,
object stores or relational databases [Warnke, 2019]. An application using JULEA usually calls
its library functions. This is pictured in Figure 2.4 on the left. There the application runs on
Compute Node #1 and #2, on both the julea client o�ering the API for the program is present.
The client connects with the JULEA server. In this case - as it is not a development environment
- this is done over network using TCP. The server running on Storage Node #1 and #2 then calls
functions provided by the appropriate backend. In Figure 2.4 it is the one for the object store.
This then hands the query over to the actual object store. Typically on the backend side di�erent
devices either serve as key value, relational database or object store. As seen in Figure 2.4 the
client connects directly to the database server on Storage Node #1, because relational databases
are not accessed through the julea-server [Kira Duwe and Michael Kuhn, 2021]. In this case
Storage Node #1 provides database and object store services whereas #2 only serves as object
store. Its the applications choice how to pick a server to use for an entry if multiple of one kind
exists. In Figure 2.4 the clients are able to select #1 or #2 for their objects. In the case of JItems,
this can be done via utilizing JULEAs distributions.

Compute Node #2

Compute Node #1

Storage Node #2

Storage Node #1
Application

Application

MPI

JULEA Client JULEA Server

Database

Object Store

JULEA ServerJULEA Client Object Store

TCP

[Kira Duwe and Michael Kuhn, 2021]

Figure 2.4.: JULEAs componenents

JULEA is able to alter the requirements its methods conform to while it is executed [Kuhn, 2015].
This is done by choosing the semantics parameters which are currently used. For example, the
safety of the information can be set to "Network" or "Storage". By that it is assured that it has
reached the given medium. JULEA ships with several semantics templates with already chosen
options.

Method calls in JULEA are grouped into batches [Kuhn, 2015]. Thus the library can perform
alterations on them. For example some requests might be united to one or there exists a better

13

sequence which decreases resource usage. Each of the batches can be executed with di�erent
semantics.

JULEA provides multiple APIs [Kuhn, 2015]. The main access mode consists of namespaces
grouping collections containing items. In this concept items resemble �les. They consist of a
key value pair and a object store entry. The �rst contains the metadata and the latter is used
for the actual �le content. JULEA already provides a implementation of a fuse �le system. This
allows existing software to also store its data through JULEA without having to alter it.

Object and key value store can also both be directly accessed through the appropriate APIs
[Kuhn, 2017]. Additionally to the former the interface for using relational databases is also
tailored for managing metadata [Warnke, 2019].

It consists of multiple structures to interact with the database [Warnke, 2019]. Columns can be
de�ned via JDBSchema. It manages a single chart of the relational database. The JDBSelector
allows choosing a set of rows which match the given criteria. A JDBIterator can then go over
each of those. To put a single row into the database, JDBEntry is used. Futhermore it is used
for updates.

An object is manipulated with methods using a JObject structure [Kuhn, 2017]. It is identi�ed
by a unique string. Its contents can be accessed via specifying a position and length, mapping
relatively close to POSIX’s functionality [IEEE and Group, 2018].

As mentioned above, JULEA can utilize various databases and object stores as storage for these
three interfaces [Kuhn, 2017]. In case of key value stores those are for example sqlite and
mongodb. Posix can act as an object store. Examples of relational databases are represented by
MySQL and sqlite.

Summary

As described previously �le systems consist of multiple entry types. Operations on them
and their metadata is standardized by POSIX. Fuse enables an easy way to implement those
functions as normal application. Both key value stores and relational databases can act as
metadata storage. To access them in a implementation agnostic manner, the interface provided
in the JULEA framework for HPC is used.

14

Chapter 3.

Implementation

In this chapter, the implementation of julea-fuse is described. The context in which julea-fuse
operates is pointed out.

3.1. Added Functionality

As mentioned before, an fuse implementation using JULEA already exists in the framework
[Kuhn, 2017]. This previous version was written for fuse2 and was already updated to fuse3.
However, besides fuse, JULEA moved forward so that it now provides an relational database
Interface additionally to the API for using key value stores which was previously the only one
intended for metadata. In order to react to these changes, this implementation extends the
existing one in order to also support relational databases. This is done with support by the
C preprocessor. DATABASE_METADATA is used to switch between relational database and
key value store as metadata storage in fuse. If it is true, the sql database version is compiled.
Otherwise the user obtains the key value version. In Table 3.1 and Table 3.2, the operation

posix functions
VFS

fuse module
julea-fuse
libjulea

julea-server
object store key value store

Table 3.1.: the key value version

posix functions
VFS

fuse module
julea-fuse
libjulea

julea-server
object store relational database

Table 3.2.: the relational database version

15

travels from top to bottom. It is �rst being initiated via a call to a POSIX function. It travels
through the layers as described in Section 2.3 until it reaches JULEAs fuse implementation
called julea-fuse and which is marked with light gray. julea-fuse then calls JULEAs library
functions and hence communicates by that with one or more julea servers. The functionality
to also use relational databases for metadata is added by this thesis. The relational database
interface used was designed by [Warnke, 2019]. The added metadata target is highlighted gray
in Table 3.2. Additional to that, julea-fuse is changed as needed in order to use two di�erent
metadata backends. In order to accomplish that, an abstraction is introduced at this layer as
described in Section 3.3 to move the database speci�c code into separate �les. Futhermore
julea-fuse was extended if it seemed helpful in order to increase compatibility with POSIX. This
allows for example that the performance of the implementation is measured by existing tools
like mdbench which measure e.g. chmod that only existed as a stub in the previous version
[kofemann et al., 2022]. This would lead to invalid results. By implementing these methods,
the two versions become more comparable.

3.2. Metadata

key value

path

size
name
�le
size
time

Table 3.3.: metadata structure of the key value store in the version before this thesis, created
after the source of [Kuhn, 2017]

schema entries

posix_metadata

path
size

owner
group
mode
object
atime_n
atime_s
mtime_n
mtime_s
ctime_n
ctime_s

key value

path

size
owner
group
mode
object
atime_n
atime_s
mtime_n
mtime_s
ctime_n
ctime_s

Table 3.4.: metadata structure of the relational database and the key value database

As mentioned previously, JULEA already provides an a fuse implementation [Kuhn, 2017]. It
uses key value stores for managing its metadata. The metadata is encoded as a bson document.
The document contained the name as string, a boolean which is set if its a �le and not a
directory, the size and the time it was created. This is depicted in Table 3.3.

16

For the next fuse implementation, the key value store implementation was changed to make
use of a struct. The direct implementation has some bene�ts, such as not needing to make
calls to the bson library but also becomes machine dependent[Warnke, 2019]. Bene�cial for
bson is that it also �ts to the framework as it is utilized in other components[Kuhn, 2017]. The
relational database version of the implementation transmits data as bson. Thus if there is a
drawback in performance due bson usage it is in any case present in this version.

As not using bson comes with drawbacks an di�erent implementation was added, where the
metadata again is converted to a bson document on writes and the values are retrieved from it
afterwards. Therefore the users are able to choose at compile time whether or not they want
to use structs or bsons for their key value metadata storage. Bson also add some tolerance
for changes in the metadata format compared to structs which could break if an attribute is
added between two values and hence their relative address changes. This can be accomplished
with e.g. bson_iter_�nd which goes to the desired value. This could be helpful in �le systems
where there are multiple versions of a �le system used. For example if the newer system has
an additional value, the old system could still use data of the new system. Vice versa the
new system would need to be programmed to expect key value pairs which miss attributes.
However, as the julea-fuse version introduced in this thesis assumes the bson documents to
contain all required variables. Hence using metadata in the format of older fuse versions is not
possible.

In case of the relational database, the metadata is stored in a table metadata. It consists of the
columns path, �le, size, owner, group, mode, atime_n, atime_s, mtime_n, mtime_s, ctime_n and
ctime_s. path is a string. All other types are integers. For every gathered time two columns
are used. This is because a time consists of two variables according to [IEEE and Group, 2018].
Namely those are nanoseconds and seconds. Each time column is followed by an _n or an _s,
determining which unit is used.

As the implementation uses the path to access �les, it makes sense to de�ne it as a index. By
doing so, retrieval and manipulation of metadata entries becomes more optimal [Warnke, 2019].
Putting new �les in the table receives some latency burden.

The key value store implementation stores the same information as the database table except for
path as this is the key which references the values as it has been before this thesis [Kuhn, 2017].
By enlarging the collected metadata, the obtained results might become more comparable to
di�erent works as this is quite similar to the ones required by POSIX [IEEE and Group, 2018].

The current implementation already calls the necessary function to run fuse at start up[Kuhn, 2017].
However, the relational database needs to conform to a schema. Hence it needs to be retrieved
from the database as described in [Warnke, 2019]. On �rst start the database is initialized with
it. On every other occasion it is retrieved from it.

3.3. Abstraction

During the implementation of the methods, it came apparent that the functionality used is very
similar. For example in order to change a metadata parameter, the value needs to be loaded
from the key value store [Kuhn, 2017]. After that it is manipulated and written back. When
implementing the logic for the database, similar repetitions occur. In this case, an entry and a

17

selector needs to be created. Then, an update needs to be performed. The application logic
shared by those methods seems to be very similar.

This can be shown at the chmod method. In case of the key value backend a JKV named kv is
created in line 6 using the interfaces from [Kuhn, 2017]. It lays in the posix namespace. Its key
is the path passed to chmod. The operation to load - j_kv_get - it is then put in the batch in
line 7, which is executed afterwards in the next line. This would fail if the �le does not exist.
After that, the mode is set in the struct in line 10. Then the update function for the key value
pair - j_kv_update - is inserted in the batch at line 11 which again is executed in the next line.
Afterwards, if both batches do not run into errors, the return value can be set to 0 to indicate
success in the if-statement beginning with line 12.

1 int

2 jfs_chmod(char const* path , mode_t mode , struct fuse_file_info*

↩→ fi)

3 {

4 //...

5 batch=j_batch_new_for_template(J_SEMANTICS_TEMPLATE_POSIX);

6 kv=j_kv_new("posix",path);

7 j_kv_get(kv ,&val ,&len ,batch);

8 if(j_batch_execute(batch)){

9 file_metadata* metadata =(file_metadata *)val;

10 metadata ->mode=mode;

11 j_kv_put(kv,val ,len ,g_free ,batch);

12 if (j_batch_execute(batch))

13 {

14 //...

15 }

Listing 3.1: chmod with key value backend

In case of the relational database backend we also need a batch to perform the update on the
entry. First, we need to specify which entry we want to operate on [Warnke, 2019]. This is
done via a JDBSelector in line 5 and 6 which receives the path as the �eld the selection is
based on via j_db_selector_add_�eld. The latter happens in line 7 to 8. This can be compared
to the JKV structure in the case of the key value store. Contrary to the JKV the selector can
represent multiple entries. In this implementation we can skip loading the metadata and only
run the update. For an update, a JDBEntry is created in line 10. j_db_entry_set_�eld writes
the new mode to the mode column in line 11. Finally the update assigned to the batch with
j_db_entry_update in line 12 which is then executed in line 13.

1 int

2 jfs_chmod(char const* path , mode_t mode , struct fuse_file_info*

↩→ fi)

3 {

4 //...

5 selector=j_db_selector_new(

6 db_schema ,J_DB_SELECTOR_MODE_AND ,NULL);

7 j_db_selector_add_field(

8 selector ,"path",J_DB_SELECTOR_OPERATOR_EQ ,path ,-1,NULL);

18

9 batch=j_batch_new_for_template(J_SEMANTICS_TEMPLATE_POSIX);

10 entry=j_db_entry_new(db_schema ,NULL);

11 j_db_entry_set_field(entry ,"mode",&mode ,-1,NULL);

12 j_db_entry_update(entry ,selector ,batch ,NULL);

13 if (j_batch_execute(batch))

14 {

15 //...

16 }

Listing 3.2: chmod with relational database backend

In both cases the �le the operations uses needs to be selected. In both cases, this is done by
specifying the path. Also, the mode is written to a data structure. Moreover both updates
require a batch. A major di�erence is that loading the metadata is not necessary in case of
the relational database. Reading and altering values also takes place in all other methods
concerning metadata. In fact, all methods inserted by julea-fuse into the fuse_operations struct
deal with metadata [Kuhn, 2017].

In order to avoid this duplication a common interface was implemented which encapsulates
the database speci�c parts and the always needed steps. It consists of JFileMetadataOut,
JFileMetadataIn, JFileSelector and JDirectoryIterator. The JFileSelector represents either a JKV
or JDBSelector. It is used to determine the �le system entry the desired value is mapped to. The
JFileMetadataIn and JFileMetadataOut store the actual metadata. The �rst one is loaded from
the database, the second one is the entry which is used to update it. This distinction is not
necessary in case of the key value store. However, the relational database returns an iterator
from an executed select statement and therefor needs a JDBEntry to write to the database
[Warnke, 2019]. In theory it might be possible to convert the bson document as it is contained
in the iterator directly to an entry as can be found in the source code of [Kuhn, 2017]. However,
this might break when JULEA’s SQL implementation is updated as this is not part of the o�cial
interface. On the other hand, in case of key value stores the piece of data can be used both
for getting and setting, so both JFileMetadataIn and JFileMetadataOut reference it. Functions
can read metadata values like owner, group etc. from JFileMetadataIn. This structure is loaded
from the database by specifying a JDBSelector for the �le. When using the SQL interface, the
batch is created internally. The value from the key value store is loaded using the batch passed
to the function.

1 JFileMetadataIn* j_file_metadata_new(JFileSelector*, JBatch *);

2 JFileMetadataIn* j_file_metadata_new_load(JFileSelector *);

3 guint64 get_size(JFileMetadataIn *);

4 guint64 get_owner(JFileMetadataIn *);

5 guint64 get_group(JFileMetadataIn *);

6 gint32 get_mode(JFileMetadataIn *);

7 //...

Listing 3.3: JFileMetadataIn

On the other hand, methods which manipulate for example the creation time or other data act
on JFileMetadataOut structures. This datatype can be initialized by converting JFileMetadataIn
to it with j_�le_metadata_in_to_out. As the update does not require to load the metadata in
case of the relational database backend, j_�le_metadata_out_new_load_for_update is introduced

19

to only do that in the key values case. Alternatively, when laying out a �le it can be created
from scratch. It provides appropriate methods to write it to the database. For write access both
metadata interfaces use an external batch so the caller needs to provide one.

1 JFileMetadataOut* j_file_metadata_in_to_out(JFileMetadataIn *);

2 JFileMetadataOut* j_file_metadata_out_new_load(const char* path ,

↩→ JFileSelector* fs);

3 void j_file_metadata_write(JFileSelector*, JFileMetadataOut*,

↩→ JBatch *);

4 void j_file_metadata_create(JFileSelector*, JFileMetadataOut*,

↩→ JBatch *);

5 JFileMetadataOut* j_file_metadata_out_new(const char*);

6 void set_name(JFileMetadataOut*, char*);

7 void set_file(JFileMetadataOut*, gboolean);

8 void set_size(JFileMetadataOut*, guint64);

9 void set_owner(JFileMetadataOut*, guint64);

10 void set_group(JFileMetadataOut*, guint64);

11 void set_mode(JFileMetadataOut*, gint32);

12 //...

Listing 3.4: JFileMetadataOut

The �nal datatype provided is the JDirectoryIterator. It is needed to list the entries of directories.
It uses the JKVIterator or the JDBIterator internally. The �rst one was already used in the
original implementation provided by [Kuhn, 2017] and returns all entries with the dir name as
pre�x. The JDBIterator version works in a similar way to keep its behavior consistent with
the previous one. All strings which are smaller than the �rst one outside the directory and the
who follow alphabetically after the last string inside the directory.

1 JDirectoryIterator*

2 j_directory_iterator_new(const char* dirname);

3 gboolean

4 j_directory_iterator_next(JDirectoryIterator* dir_iter);

5 char*

6 j_directory_iterator_get(JDirectoryIterator* dir_iter);

Listing 3.5: JFileMetadataOut

With the interface introduced by this thesis chmod can be implemented as shown below. Again,
a batch is created in line 5. Then a JFileSelector is created for the �le given in path in line 6.
As no metadata needs to be read j_�le_metadata_out_new_load_for_update is run to only load
data in case of a key value store is used. If this is successful, the mode can be set in line 9.
Afterwards the update can be added to the batch and then run in line 10 to 11.

1 int

2 jfs_chmod(char const* path , mode_t mode , struct fuse_file_info*

↩→ fi)

3 {

4 //...

5 batch=j_batch_new_for_template(J_SEMANTICS_TEMPLATE_POSIX);

6 fs=j_file_selector_new(path);

20

7 fe=j_file_metadata_out_new_load_for_update(path ,fs);

8 if(fe){

9 set_mode(fe,mode);

10 j_file_metadata_write(fs,fe,batch);

11 if (j_batch_execute(batch))

12 {

13 //...

14 }

Listing 3.6: chmod with common interface

3.4. Synchronization

When a value in a key value store is altered a race condition can occur. If machine 0 alters
the same value in the store as machine 1 before the update of the other arrives, e.g. machine
0 changes the mode and machine 1 the atime, one of the changes is not in the �nal version
of the metadata value. This is also a obstacle for relational databases and is known as "lost
update" [Saake, 2018]. In the previous version of julea-fuse as in [Kuhn, 2017] only the size
value was modi�ed. As in this thesis more metadata variables were added which could be
changed after �le creation the magni�cence of the problem has grown as more variables were
introduced where the described phenomenon can occur. However by adding a version for
relational databases, there now exists an implementation were updates are only done on certain
values and without fetching the entire value block. Relational databases are moreover designed
to comply to ACID which requires them to avoid "lost updates" [Saake, 2018].

The authors of the framework pointed out, that this behavior also occurs at the hdf5 part as
can be found in the source of [Kuhn, 2017]. According to them, it could be mitigated by using
a kv-pair for each variable in the entry, which would increase the number of searches needed,
or by providing a locking solution.

Inconsistent metadata however is probably still undesired by users. To circumvent this, �les
might only be accessed in non concurrent manner. As this is very broad there might be a desire
to limit the operations so more clients can access a �le. The following julea-fuse operations can
be run in parallel on key value stores without missing changes to other variables: creat, unlink,
mkdir, rmdir, truncate, access and getattr. The same is true for read after opening the �le.

Other solutions exist as well, which could solve the problem. The user software could com-
municate within itself to determine who is allowed to access the �le. A node could be as-
signed the task to determine the one allowed to access the metadata of a �le exclusively
[Van Steen and Tanenbaum, 2017]. Other possibilities of mutual exclusion could in theory be
realized via the current storage framework. One possibility would be a token ring. In this case
a token would be given to every machine in one cycle. The machine holding it could keep it if
needed or put it to the next machine. This could be realized by having an entry per mount point
or machine in the key value store or a separate relation for those in the relational database.
There would then be a ever running process per julea-fuse mount who checks if its got the
token or not. If the token is currently hold, it either enters the critical section. If done with
that it could go writing the token to the entry of the next machine.

21

In key value stores, it would be possible to only keep track of the changes plus their se-
quential arrangement and not save the actual value as it is done commonly in distributed
environments[Van Steen and Tanenbaum, 2017]. The client needing the data would then con-
struct the metadata entry dynamically. This is comparable to state machine replication, but
the collection of changes is stored more or less centrally and only processed by the fuse client
if the metadata they alter is needed. Con�icts, like executing chmod as user A after a chown
call set the owner to user B so the privileges are missing, would need to be resolved by the
fuse client. This solution would also lead to many entries, which might could be compiled
to actual entries from time to time by some always running process, so only this entry and
updates after it would be kept in the store. Those entries could be accessed via an iterator,
which would create a lot of overhead. This solution is comparable to journaling �le systems
[Andrew S et al., 2015].

Those options would probably increase the software’s complexity tremendously, which would
lead to for example di�culties for maintenance, adding new functionality or �nding bugs, it
was decided to evade this. It also is not necessarily a topic di�erentiating key value stores from
relational databases when excluding the granularity discussion. It might be solved with future
work.

3.5. Access Control

As mentioned above, functionality for both chmod and chown is added to julea-fuse by this
thesis. Those are concerned with managing the rights of user accounts for a single �le
[IEEE and Group, 2018]. Additional the metadata required for them - owner, group num-
ber and the mode - is kept. If a �le is copied from an existing POSIX �le system it might
bring these attributes which is another argument for adding them. When retrieved again from
julea-fuse and put in a traditional �le system, without those, the metadata is cut o� or replaced
with JULEAS’s place holders. However, this fuse application still does not implement access
control. Therefore it is only performed if fuse is instructed to let the operating system handle
it [Vangoor et al., 2017]. To be checked, the os needs to retrieve the necessary information and
after that the actual operation is run. Hence it could be already invalid. Therefor atomicity for
those operations like in relational database as found in [Meier and Kaufmann, 2019] would be
required.

JULEA as found in the source of [Kuhn, 2017] also does not check if an operation by an user is
allowed or not. If requests to the JULEA server are made with an malicious intent, one could
easily read or manipulate �le system information. Hence, the current method of access control
can only be used if there are no harmful actors on the systems. Measures which only exist on a
layer above the client would need to be supported by additional measures like �rewalls which
limit communications to the JULEA server.

All in all, the implementation of �le access data has not many bene�ts considering security. It
increases conformity with POSIX, for example if �les a transferred from another �les systems
this information is not lost.

22

3.6. High Level Interface

As mentioned in section fuse Section 2.3 there are two levels a fuse implementation can operate
on [Vangoor et al., 2017]. The fuse version of [Kuhn, 2017] chooses the high level interface.
As mentioned before, the high level interface uses pathnames to select �les. Given that the
way of �le look up remains the same as in [Kuhn, 2017], julea-fuse also still uses the high level
functions. Then the node id is handled internally by fuse. This keeps the application logic
from JULEA’s point of view smaller. Thereby it is easier to understand and it contains less
possibilities for errors. If julea-fuse is set to use 64-bit integers as identi�ers, this advantage
would vanish. Fuse’s fuse_lowlevel_ops uses index node numbers as a function parameter
[libfuse, 2023a]. Therefore lookup could retrieve the target of the �le name it receives.

In contrast, simple integers might be hard to read without context. Integers could be used both
as metadata and object names. The integer then would also be used as inode number returned
by the lookup call in fuse_lowlevel_ops. As mentioned in linking, doing so comes with its own
bene�ts and drawbacks. Additionally, the total number of �les in julea-fuse would be limited
to 264 [fuse, 2023a].

Alternatively, the response to lookup could include a index node number unique to the client.
Then the limit would only apply locally. The names would be still be human readable. It would
require fuse to become stateless.

3.7. Pathname Mapping

�lename metadata

object

(a) �lename identi�es both object and metadata

�lename metadata

object

(b) metadata has an id which points to object

�lename

�lename-to-id metadata

object

(c) separate �lename to id mapping �lename

path-component metadata

object

(d) path resolution

Figure 3.1.: lookup

In the previous version of julea-fuse in [Kuhn, 2017] metadata and objects are both referenced
via their names. This is visualized in Figure 3.1a. However, common local �le systems are
usually organized as tree data structures [Andrew S et al., 2015] as described in Section 2.1.
julea-fuse in contrast lists directory contents by selecting those with their name as pre�x. This
causes �les to be e�ciently accessible using the �le name, which is passed to methods in fuse’s
highlevel API [Vangoor et al., 2017]. Various other authors choose a similar addressing scheme
like [Tatebe et al., 2022].

23

If the �lewould need to be looked up by every part of its name as described in Section 2.1 the com-
putational complexity would increase by a factor which is the number of parts in the �le name.
However some �le systems with metadata databases use exactly this [Ren and Gibson, 2012].
As shown in Figure 3.1d the path components would contain the key to other path components
if it were directories. If they are regular �les, they would need to include the identi�er of the
metadata and the object store entry. This would be very ine�cient as the process goes from one
directory to another until the �le is reached. To avoid that, the identi�er of metadata and object
can be saved every time a �le is opened and through the lookup process could be reduced to its
current complexity. On the side of bene�ts, that would make it possible to create hard links for
both �les and for directories. It would be the only version with links on directories as those can
occur on every path resolution step [Andrew S et al., 2015]. In relational databases lookup over
every path component might be achieved with a single request. In SQL, recursive queries can
be used to get from one starting entry to the next entry according to it until the end is reached
[Saake, 2018]. This is however not supported by the current interface [Warnke, 2019].

If a �le is renamed, the key in the key value database can be changed easily by inserting
the value elsewhere [Wiese, 2015]. This is also the case at the relational database entry by
updating the path. The object store however does not provide a renaming method. An option
for mitigation would be simply copying the object to the object with the new name. This
would take a long time on large �les, especially if there is a network connection between the
machine running the copying operation and the one providing the object store. Additionally
this might cause the �le system to be in a inconsistent state where reads and writes could
happen to both the new and old object while the operation is pending. In order to avoid that, a
unique identi�er for the object could be created. The SQL database interface already provides
a way of generating one through its _id �eld [Warnke, 2019]. In case of the key value, this is
however not possible. To mitigate this, the �le name is hashed and it is looked up in the object
store if there is already an object existing with the same id as name. If so a random number
is added to the current id until a free object name is found. This of course adds overhead to
the �le creation especially if there are close to 264 objects which maximum count of objects
to the �le handle size [fuse, 2023a] where the id is kept after open. However, creation only
happens once per �le. This new implementation causes an additional step per object access if
the identi�er is not cached locally in the �le handle. In contrast to the previous possibility �le
content access would not be in�uenced, only the metadata access would fail if it is renamed.
As renaming is so important that its part of mdbench [kofemann et al., 2022] this method was
chosen. If �les that are directories need to be renamed however di�culties occur as also pointed
out by [Tatebe et al., 2022]. In this case an iteration over every path with it as pre�x in the
database occurs. Found metadata is updated to start with the new directory. Hard links for
regular �les could be realized in this version if there are separate metadata entries per link
which would be updated every time the metadata of the �le is changed, introducing a lot of
overhead and increasing the chance that a value is not updated because an operation fails or
the values become inconsistent due to concurrent updates by di�erent clients. In case of the
key value store a list with all other metadata entries would need to be kept in each one of
them to update those to. Relational databases however also enable updating values in multiple
entries [Saake, 2018] which would enable links via separate meta data copies, but also ship
with overhead. Some other key value store �le systems use special entries for hard links and
relegate to them from the key value pair addressed with the path[Stender et al., 2010]. This
however requires a conditional resolution in every method depending on whether its a hard
link or not.

24

In order to avoid that, it would be possible to use an identi�er also for metadata. In this case,
there would also be an operation needed for retrieving the mapping from �le name to id. The
lookup would take place before every operation on metadata. This is pictured in Figure 3.1c.
This would also enable hard links for regular �les directly without traversing the �le tree, special
or multiple metadata entries. The operations for looking up the identi�er are always necessary
on key value stores. Relational databases provide the possibility to join tables [Saake, 2018].
Therefore two tables, one with the links and the identi�er and one with the actual metadata,
would enable the creation of links and reduce retrieving the metadata into one operation. As
there is currently no way for joining schemas provided trough the interface it is not feasible
[Kuhn, 2017]. This would clearly be an advantage on the side of relational databases, a thesis
concerned with assessing the performance for metadata should honor this by implementing it
if possible. Otherwise there is avoidable overhead on the side of relational databases.

To summarize this section, with this thesis julea-fuse moves from Figure 3.1a as in [Kuhn, 2017]
to Figure 3.1b.

3.8. Statefulness

Fuse �le systems can be either stateful or stateless [Vangoor et al., 2017] [libfuse, 2023b]. The
previous form of julea-fuse from [Kuhn, 2017] realizes a stateless implementation. Stateless
versions relinquish data structures for open �les. As fuse runs the functions of the implementa-
tion in multiple threads access to an entry would need to be synchronized locally on a machine
if the information stored changes after being loaded. For example, the �le size could be updated.
If this is done by multiple threads the update by one could be lost. Therefore probably mutexes
would be needed per entry variable (if updates of it depend on the previous state).

The data structure either is set to a �xed size or is dynamically allocated. A �xed size structure
like an array would introduce a limit for the maximum number of opened �les. A dynamically
allocated structure like a hash table would probably need locking if a threshold of open �les is
reached and a more are required. All in all, the data structures would lead to limits or overhead.
In contrast, a stateless implementation is able to scale better.

In a stateless implementation, metadata needs to be loaded every time it is of interest for an
operation. As the JULEA client and the backend usually communicate through a network
[Kuhn, 2017] this introduces additional tra�c and is time consuming. Therefore, caching
already loaded variables could be helpful. Furthermore updates to metadata can be reduced. As
JULEA has introduced batches aiming to accomplish this [Kuhn, 2015] it might be possible to
collect all metadata operations for a �le occurring wile it is open in a single batch. However
this would require to make sure this data is not read in the mean time. This again and caching
in general introduce problems as described in synchronization Section 3.4. Hence the data
cached should not be manipulated by other clients until the �le is closed.

If julea-fuse stores open �les in a data structure a theoretical possibility is introduced that close
is not run on an entry. In this case, it could �ll a large chunk of memory over time. This is
especially problematic as the client is likely a long running application.

As discussed above, allocating data structures when opening �les introduces its own problems.
However statelessness contradicts caching metadata. As the path to metadata mapping is
changed as described in Section 3.7, now the object id is contained in the metadata. To avoid

25

loading it every time for read and write, the �le handle is set to the object id in the data structure
passed to those methods as described by [libfuse, 2023b] in open. This is a change introduced
with this thesis. It can be converted to the name of the object for the operations concerning
it. Time updates are avoided by altering metadata once when the open operation is run. This
however is not done for writes as there the size needs to be updated anyway It depends on
the open �ags like O_RDWR [IEEE and Group, 2018]. This di�ers from POSIX as there it is
suggested that this is done when e.g. read is actually run.

3.9. File Content

The current version of JULEA-fuse does not implement fallocate and trim. Some modes of
fallocate [Chinner, 2019] would require deleting space from the middle of the �le. This would be
feasible if the contents following the section would be moved to the former start of the deleted
part. Alternatively a table could be used to de�ne the free spaces in a �le. It could be done
similar to the catalog for disk blocks in Unix inodes [Andrew S et al., 2015]. This would result
in additional overhead for read operations which would need to lookup at which positions
zeroes should be read. Moreover, a separate tool would be needed which shrinks the objects to
their actual size because every call to fallocate in this would create unused space. This could
then only be freed by deleting the �le. Otherwise it would cause full storage medias with large
chunks of unusable and invalid data. Another mode of fallocate provides a gap between �le
content at a given point. This could be realized by copies.

copy_�le_range [Schumaker, 2021] is not implemented in the current version of the JULEAs
fuse implementation in the source of [Kuhn, 2017]. Due to the fact that there is no interface
on JULEAs server supporting it directly, the data to be copied always needs to be transferred
through the network. As RAM and network package sizes are limited resources there might
be multiple iterations necessary. Using copy_�le_range reduces the internal communications
between the local julea-fuse and the kernel [libfuse, 2023b]. Hence there are some very small
bene�ts by implementing it. Other distribute �le systems might be able to provide a more
optimal version of this by instructing the object store to perform the copy locally.

As pointed out when describing fallocate still a single object is associated with a �le as it is in
the implementation in [Kuhn, 2017]. read and write call its appropriate methods. Additionally
to manipulating the object write still changes the size as previously. As this thesis introduces
new time metadata this needs to be changed according to [IEEE and Group, 2018]. Therefore
mtime_n, mtime_s, ctime_n and ctime_s are set to the current time on write.

3.10. Directories

On classic �le systems directory entries are typically stored together in a speci�c location
[Andrew S et al., 2015]. In the implementation of JULEA as found in [Kuhn, 2017] the �les of a
directory a retrieved via a JKVIterator. The iterator selects every key with the dir name as pre�x.
Through this method, no separate key value pair needs to be kept per directory containing its
entries. If this entry would exist solely for dir iterations it would contain duplicate information.
Furthermore it would need to be updated on e.g. every �le creation and deletion causing
overhead and possibilities for inconsistency for example if only the value in the directory

26

pathname
/
/foo
/foo/bar
/foo/baz
/foo/baz/bar
/foo/baz/bar/car
/foo/car
/foo0
/foo0/bar

Table 3.5.: Database entries selected by the JDirectoryIterator for "/foo"

contents is updated. However it could result in faster lookup of �le contents. Looking up one
speci�c value like an entry list should be faster than looking up multiple entries. Therefore
the iteration method remains the same. On the relational database side the method is realized
with a JDBSelector and a JDBIterator as introduced in [Warnke, 2019]. As described before,
j_db_selector_add_�eld is used to limit the items over which the iterator goes with the help
of their path. Using the pre�xes for the iteration in both cases, even �les in sub directories
are returned as is visualized in Table 3.5. Therefore, this is an ine�cient implementation with
room for improvement in both database types.

While not using a �le list, an metadata entry is associated with each directory as was in
[Kuhn, 2017]. It contains the same attributes as in Table 3.4. The object value is set to 0.
The atime* and ctime* in the directory entry remain constant unless directly changed with
utimens.

Because julea-fuse uses a readdirplus method which itself fetches all needed information and
lays out data structures opendir and releasedir are not required [Kuhn, 2017]. Thus they are
not implemented. If one would use a entry list it could be loaded or freed with those methods
[libfuse, 2023b].

Summary

All in all, in order to support both relational and key value databases with the same methods
passed to fuse, a common abstraction was used to bundle their speci�c code. The synchroniza-
tion behavior di�ers as the relational database updates speci�c �elds instead of key value pairs.
Access control only happens outside julea-fuse, only the metadata needed is gathered. The
path directly identi�es the metadata. Hence no tree traversal happens. The object containing
the �le content however is addressed via an integer id. Hence on opening a �le, the id is loaded
and used in writes and reads making julea-fuse stateful. The high level interface of fuse is
used in julea-fuse. Directories entries are collected via selecting metadata with the directory as
pre�x in both database implementations.

27

Chapter 4.

Related Work

In this chapter, contributions are listed who also use databases to store metadata or similar concepts.
It is especially described how they organize their path resolution as this needs to be done for every
operation depending on whether the result is cached or not and therefore it likely has a high
in�uence on metadata performance.

There are other database types besides key value stores and relational databases [Meier and Kaufmann, 2019].
One of those are xml databases. In [Holupirek, 2012] these are used in metadata management.
The framework employed to bind to the kernels �le system interface is also fuse. Additionally, it
too utilizes fuse_operations. It also incorporates a client-server architecture. A special database
is introduced, BaseX-FS. It is split into handling �le content, metadata and the directory struc-
ture. One goal is to make the metadata accessible through an interface (Xquery). In contrast
to classic UNIX, the information in a �le is processed by the �le system. Hence the interface
can be used on it. It processes paths in a classical manner in contrast to the direct access in
julea-fuse. The performance of the �le system is not assessed. What is of interest to the author
is the performance of requests to the database introduced. In contrast to julea-fuse it is not
limited to regular �les and directories. It also captures POSIX metadata like julea-fuse.

[Niazi et al., 2019] used a NewSQL database. It di�ers from the SQL-ones in this thesis as it
can comprise multiple machines. Like the previous work, HopsFS does not use complete paths
as indices as julea-fuse does. They take responsibility to assign the �le entries to the di�erent
nodes. It handles blocks, in contrast to julea-fuse, which assigns keeping the �le content to
the object store. HopsFS was evaluated on similar operations as julea-fuse but in regard of the
behavior with more nodes for the database. Like JULEA it geared towards systems running on
multiple machines.

A very early approach realizing a �le system relying on a dbms is the Inversion File System.
It di�ers from julea-fuse as it aims at giving the same guarantees as relational databases do for
manipulations. In order to accomplish that, one relation per �le is generated which then keeps
its content. The organization in directories is done in a relation. Another relation holds the
information for the stat structure. In julea-fuse, the metadata storage and the path resolution
is conducted through one table. julea-fuse therefore does not realize all POSIX �le system
concepts such as hard links. Moreover its content is managed by the object store.

In [Eisl, 2019] work, the �le tree is traversed as in a normal �le system, not in the direct way
as julea-fuse accesses �les. The index node number serves as primary key. The metadata is
POSIX oriented. It also stores the �le content in the database but in another table.

DBFS also uses the same database type as the previous one [Kunchithapadam et al., 2011].
By doing so, the �le system should be able to make similar guarantees when manipulations

28

happen like relational databases do. It can serve multiple machines. From within the fuse layer
SQL-Statements are generated. These exert a special ContentAPI deviating from the standard
database methods. It has a similar role as the fuse struct or the Virtual File System. Instances
can override it with their own SQL logic. Hence one could say that DBFS is more of a family of
�le systems due to its adaptability. Therefor path resolution may di�er. File content is split up,
where as julea-fuse uses only one object. For the content SecureFiles is responsible. This is
integrated into the database.

Moreover key value stores were introduced in the realm of persistent storage in the form of
tablefs [Ren and Gibson, 2012]. Tablefs also binds to VFS via fuse. The database used is leveldb.
Its purpose is to manage metadata. By doing so, it holds the �le hierarchy. Moreover it contains
�le system entries with a content size under a certain value, namely 4kb. In contrast, the data
of big regular �les has another destination. It is put on the persistent storage of the computer
where tablefs is deployed upon. There it is identi�ed via the index of the metadata respectively
st_ino. The �rst part of the metadata identi�er is the serial number of the super ordinate folder.
The last part is obtained via hashing the alias with which the �le is referenced. In contrast to
julea-fuse multiple steps are necessary to get to an entry. This is because julea-fuse uses the
path as identi�er. However, hard links are supported. In order to accomplish that, there is a
split between reference and target. The next integer is the next �le id used in contrast to the
implementation of this thesis where the next free is guessed by adding a random int to the
hash of the path. The related IndexFS implements a distributed �le system [Ren et al., 2014].
However, it is also not concerned with the �le content. This is the responsibility of another �le
system at least for �les bigger than the threshold. Multiple servers can manage the metadata of
an �le system instance. The metadata format matches closely the one of TableFS.

LocoFS represents another distributed �le system [Li et al., 2017]. The database chosen by the
creators is a key value store, Kyoto Cabinet. An instance has one Directory Metadata Server in
contrast to a collection of File Metadata Servers. The organization of the key value pairs di�ers
from julea-fuse. In LocoFS, The path identi�es the directory inode information. julea-fuse does
this for all supported �le types. The values for regular �les however are referenced di�erently.
In this case the string results from appending the last path component to a number mapped
to its folder. According to this schema the metadata of /foo/example could have the key
10-example if 10 is assigned to foo depending on the actual grammar used. These inodes are
divided into the permissions plus creation time and the attributes altered when the information
inside it changes. julea-fuse puts all metadata in one key-value pair thus involving everything
in every call. LocoFS only operates on the half which is relevant. The third type of key value
pairs are those made of the folder’s number referencing the folders item. julea-fuse in contrast
implements dir listings via the path names. However, LocoFS exploits internals of the database
when changing folder names which is impossible to achieve via a generic key value interface.
LocoFS does not convert to an intermediate format like bson. Its values sizes are also constant
like in julea-fuse. Another similarity is that an Object Store holds the �le content. In contrast
to julea-fuse a cache exists in the case of folders.

BabuDB represents a key value store[Stender et al., 2010]. It is geared towards managing
metadata. The inode values are distributed across several key value pairs. By having a triplet
of metadata information, rewrites are smaller than in julea-fuse were the entire metadata value
is exchanged. Values are referenced by the number of the containing folder followed by the
last path component and ending with the number describing the metadata component. This
is contrary to the approach in this thesis where the path makes up the key. Hard links are
possible in BaduDB a separate key value mapping where their inode information resides. The

29

entry in the original mapping then points to one of the latter. This could be done in JULEA e.g.
through using di�erent name spaces, however it would also add additional overhead. BaduDB
supports certain consistency requirements of classic �le systems.

CHFS also relies on a key value store[Tatebe et al., 2022]. The database is called pmemkv.
Similar to JULEA the backend can be spread across multiple nodes. Like julea-fuse, CHFS
passes through the �le system operations. Metadata is referenced in the same way as in julea-
fuse except for an additional identi�er at the end. This references the segment of the �le’s data.
Therefore a �le consists of multiple database entries contrary to julea-fuse with a single object
attached to a metadata value. Inode information is present at every entry. Additionally, the
segment of the actual �le content resides in it whereas julea-fuse relies on a object store.

BetrFS puts metadata in so called 𝐵𝜖 trees [Jannen et al., 2015]. By doing so the authors aim to
better the behavior on alterations or insertions of data. It binds directly to VFS unlike julea-fuse,
which runs in ring 3. Both �le content and inode information are managed by the database
TokuDB which was transferred to ring 0 by the authors. The path name resolution happens in
the same way as in julea-fuse. The content of a block is found via appending the its identi�er
to the path. TokuDB passes its data to ext4.

Summary

Multiple other versions of �le systems using databases for metadata storage exist. However no
one switches between two database types as in julea-fuse. The organization of metadata in
regards of the path resolution is done in various ways. Key value stores seem to have been
more favorable over time and especially in recent years. Relational databases seem to be less
prevalent for this use case.

30

Chapter 5.

Evaluation

In this chapter, the performance of julea-fuse is measured in regard of commonmetadata operations.
The two di�erent database types are compared against each other. In order to do this, multiple
database implementations per type are used and compared. First the operations on regular �les
are of interest. Afterwards directories are evaluated. Then implications are gathered.

5.1. Setup

The tests where run on a 4 core Intel i5-7500 processor which could access 16 GB of RAM. The
�le system used was BTRFS. It resided on a WDC WDS500G2B0A Sata SSD. However this is
only relevant for benchmarks using backends running as container. The other measurements
were taken on componenents storing their data inside tmpfs. The benchmarks where conducted
under Fedora 37 kernel version 6.1. The measurements were taken with the mdbench python
script [kofemann et al., 2022]. The object store used was posix. The JULEA backends deployed
for relational databases were sqlite and mysql. Mysql 8.0 was running inside a container as
described inside JULEA’s documentation [Kuhn, 2017]. For key value stores, measurements
were taken on lmdb, leveldb, rocksdb, sqlite and mongodb. Mongodb 6.0 was also executed
within a container. During all measurements the �le size was one Kilobyte.

5.2. Measurements

5.2.1. Operations on Regular Files

During the measurements the time of speci�c operations was taken. The creation, retrieval
of metadata, changing the owner, changing the name and removal of a �le were the actions
measured. The operations took place on 32768 �les which were created sequentially. The
average times for �le operations to complete was also measured on the fuse implementation
with using bsons to store the metadata internally. By doing so, it can be concluded whether it
creates an measurable amount of overhead compared to the struct version or not.

31

�le creates �le stats chmod statsmv stats �le removes

0

5

10

15

20
tim

e
in

m
s

sqlite
mysql

(a) Measurements of operations on regular �les in Relational Databases

�le creates �le stats chmod statsmv stats �le removes

0

1

2

3

4

5

6

7

tim
e
in

m
s

lmdb
leveldb
rocksdb
sqlite

mongodb

(b) Measurements of operations on regular �les in Key Value Stores

�le creates �le stats chmod statsmv stats �le removes
0

1

2

3

4

5

6

tim
e
in

m
s

lmdb
leveldb
rocksdb
sqlite

mongodb

(c) Measurements of operations on regular �les in Key Value Stores with bson encoding

32

Comparing the times within the relational backend in Figure 5.1a it stands out that �le creates
take the most time. This is likely because the �le object needs to be laid out, which involves
trying di�erent ids to check which one is still open. Furthermore creates are known to be
costly on databases with indices [Warnke, 2019]. Retrieving values for stat is the least costly
operation. From the remaining operations, mv is the lengthiest running function. Like chmod
one value, the path, needs to be updated. The additional overhead when compared to chmod
could be caused by the fact an index variable is concerned in this case. Therefore a new position
in the internal data structure needs to be determined. In both sqlite and mysql, this is a B-Tree
[SQLite, 2023b] [MySQL, 2023a]. Another reason could be that before performing mv, the fuse
daemon might be querying both �les to determine their access rights [IEEE and Group, 2018].
Additionally rename itself checks if the new �le already exists by trying to load the metadata.
chmod only involves a single �le. File removes require the internal data structure of the
relational database to be updated as entries vanish. Furthermore they cause an operation on
the object store, which introduces some time overhead. These might be the reason why it
needs more time than chmod. The latter only changes one variable in one row. Mysql is up to
14 times slower then sqlite. This occurs in chmod. In contrast, stats has only a di�erence of
three times between the databases.

As mysql actually runs as a server, it might be more di�cult to check access permissions for mul-
tiple potential users [MySQL, 2023c]. This would not explain the di�erence between reading
(stats) and writes (create, mv, chmod and remove). Locking might need to be more strict when
writing as it invalidates e.g. cached data. As [Saake, 2018] points out it introduces classes of prob-
lems like "lost update", "dirty read" and "nonrepeatable read". Hence both relational databases im-
plement di�erent lock types for information retrieval andmanipulation[SQLite, 2023c][MySQL, 2023b].
sqlite enforces mutual exclusion respectively consistency on a �le level. This might be ben-
e�cial in this use case because all operation happen sequentially. Hence being able to lock
single entries does not bene�t mysql were as sqlite only has to manage one lock and thus less
overhead. One of sqlite key aspects is that manipulations are applied straightly at the database
�le [SQLite, 2023a].

Except for stat, mysql’s measurements exhibit a very high deviation. The communication
via server could be subject to �uctuation. Other processes might also listen at the address
con�gured as in [Kuhn, 2017]. Moreover the operating system may cause utilization of the used
SSD whereas the sqlite �le on tmpfs has always the same speeds. The mysql server might run
some background tasks contrary to the library calls in sqlite [MySQL, 2023c][SQLite, 2023a].

The same structure concerning time of the metadata operations arises when looking at the
two key value based fuse implementations. Those can be seen in Figure 5.1b. The most time is
needed when using mongodb. As this runs inside a container like mysql the the explanation
for it is likely the same. In contrast to the other backends, the server within a container needs
to be contacted to execute an operation. In contrast to mysql, mongodb provides only between
2.9 and 4 times slower results. The container/server con�guration does not seem to add an
constant overhead as the di�erence between lmdb - the fastest key value store backend in this
comparison - and mongodb lays roughly between one 1 and 3 ms whereas in case of mysql and
sqlite a gap between 7 and 14 ms occurs.

The next slowest version in the key value store is sqlite. As a relational database the operation
is encoded in SQL syntax which is then interpreted [SQLite, 2023b]. Moreover, as this database
type gives more guarantees about its behavior, like ACID, additional overhead is introduced
especially as this needs to be met at the entire functionality of the relational database, not only

33

a two-value-tuple. Therefore it might be optimized for another use case than the rest of the
key value stores.

Leveldb outperforms rocksdb on creation, stats and chmod. As rocksdb is a descended of leveldb,
the similarities make sense [et al., 2023].

Lmdb accomplishes the quickest completion of requests. In contrast to other key value stores
it has no own bu�er[Chu, 2011]. Rather so called mapped memory serves this function. Al-
terations occur on duplicated pages contrary to the manipulation of existing ones. Hence the
need for mutual exclusion is reduced. According to the results obtained in this thesis, these
seem to be bene�cial properties for serving as metadata storage. Replicating pages is probably
very cost e�ective when those reside in tmpfs as is the case in this evaluation. It seems to be
more e�ective than collecting changes disconnected from the a�ected entries as in [et al., 2023].
Rocksdb bu�ers needed values moreover in a so called memtable.

mongodb’s results may show a high standard error for the same reasons as mysql. File creates
show really high deviations. As mentioned previously, for objects ids are guessed via the name
hash and random numbers. When creating a �le, there was probably an id obtained which was
already allocated. Therefor the same operation needed to happen again causing really long
delays.

�le creates �le stats chmod statsmv stats �le removes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tim
e
in

m
s

sqlite-kv
sqlite

Figure 5.2.: Measurements of operations on directories for sqlite via Key Value Store and
Relational Database interface

To be able to compare the two backend types together, in Figure 5.2 di�erence between the key
value backend and the relational database backend is shown with the two implementations both
using sqlite as the target. It becomes apparent that the key value store version always performs
better in terms of latency. Via using the same underlying technology this part of the �le system
has the same overhead. Only the two interfaces and the fuse methods di�er. Therefore by
comparing them we can estimate the overhead stemming from those. One important di�erence
between those to is the granularity. As mentioned before the key value store operates on
values like their raw data. This is realized in SQL by using BLOB. By doing so sqlite is freed of
managing the internal structure. For example mode does not need to be an integer. Possibly
sqlite can behave more optimized if the path is the primary key and not only an index. In the
key value version the current name space and key are used for the former [Kuhn, 2017]. In

34

the database version only an index is created on the path. The primary key is the _id column
not directly included in the schema. Keeping those separate might be unhelpful. By knowing
that a path value is unique, maybe even in combination with the name space, might provide
some possible optimizations like stopping after one tuple. The other key value stores perform
even better than sqlite. This is probably because they do not need use SQL as a layer between
JULEA and database. Moreover they do not provide full relational database capabilities like
enforcing schemas.

When using bson encoding as seen in Figure 5.1c the pattern remains the same as in the key
value stores with structs except that leveldb on average creates �les faster than lmdb. The
mean of �le operations via rocksdb is never faster then leveldb. The average di�erence between
the values in the bson encoded variant and the version using structs to organize the value in
the key value store are 2.86 µs. This is might as well be explained by other factors than the
di�erent structures implemented. The di�erence has no meaningful in�uence on the decision
between the two variants.

5.2.2. Operations on Directories

To measure the performance on directories 32768 directory �les where created. Each directory
contained one regular �le.

35

dir creates dir statsdir removes

0

2

4

6

8

10

tim
e
in

m
s

sqlite
mysql

(a) Measurements of operations on directories in Relational Databases

dir creates dir statsdir removes

0

0.5

1

1.5

tim
e
in

m
s

lmdb
leveldb
rocksdb
sqlite

mongodb

(b) Measurements of operations on directories in Key Value Stores

dir creates dir statsdir removes

0

0.5

1

1.5

tim
e
in

m
s

lmdb
leveldb
rocksdb
sqlite

mongodb

(c) Measurements of operations on directories in Key Value Stores with bson encoding

36

The directory operations show a similar structure to the actions on regular �les. Querying
existing data is less expensive than adding or removing entries. As the �les concerned are
directories they do not have an object attached to them. Therefore the overhead of object store
operations is removed. Removing entries is still less costly than inserting new �le metadata.
Hence this is caused by the database, not the object store operations. It might be easier to
remove entries than adding new ones. Only in mysql the di�erence is very narrow with 0.05
ms.

In terms of standard deviation it becomes apparent that directory operations do not exhibit
very high values on creation compared to regular �les. Therefore the �uctuation on regular
�le initialization was probably due to the selection of an object id. Another possible cause is
overhead when writing the 1 kb of �le content which is not necessary in case of directories.

5.3. Implications

The latencies of operations run on a separate server are clearly larger than those run via the
library. If access to the server is not required by a third party, moving to a server less solution
for �le metadata improves access times. This might not hold true in other cases for example if
using a server balances resource usage or lets other applications access the metadata.

For �le systems with a related structure, key value stores complete �le operations faster than
relational databases. The latter might be able to provide better performance if path lookup is
realized in a less key value oriented way. Also locking in the �le system might enable more
caching and collecting operations in batches therefore enabling manipulating more data at once.
This is the usual mode of operation for relational databases [Saake, 2018] as mentioned before.
Key values stores would then need to transmit the entire entry for every tuple in order to update
it whereas databases could emit a single query consisting of multiple sql statements. However
only few operations were measured. For reads in the case of stat for example very little time is
needed on every data base backend. chmod also requires less time then the other operations
writing metadata. As the latter by only changing a value is closely related to changing the size
in writes this is a relatively cheap operation. It would be necessary to compare the write times
of objects in the object store to the write times of the metadata to conclude whether 0.6 ms are
relevant or not. This was not conducted in the thesis as this depends on the choice of the object
store. Moreover, di�erent storage medias like HDDs and SSDs would need to be considered.

If latency is the highest priority from the key value stores lmdb should be picked.

Bsons seem to add only very small overhead, at least if the data collected in a document remains
small like in this case. As they represent a format designed for data exchange, the bene�ts - like
readability on every machine - implicated by it outweigh the almost non existent overhead.

Summary

Key value stores were consistently able to achieve smaller latencies. The di�erences between
structs and bsons are close to zero in regard of run time. This appears to be also caused by the
used interface as provided by JULEA as became clear with sqlite. Very high deviations occurred
when creating regular �les.

37

Chapter 6.

Conclusion

In this chapter, possible limitations to the evaluation setup for metadata performance and general
observations when implementing julea-fuse are described. Afterwards directions which could be
assessed in fuse �le systems which use databases as metadata target are pointed out.

6.1. Conclusion

All in all, it is apparent that key value databases complete queries faster than relational databases
under the given workload. For �le systems using a similar approach to metadata as this one, a
key value store is probably the most appropriate solution. This might be controversial if other
capabilities of a database are required which were not part of the evaluation. The di�erence
between the database types is most signi�cant on changes to the values of metadata. Especially
the absolute values in �le creation and removal diverge. If this is of no interest, for example if
the �le system to be created is to be used predominantly for read access, other metrics might
be more relevant for selection than access time.

In the case of JULEA, it can be noticed that the key value store solution outperforms the
relational database solution on every operation. This is true independent of the backend, as
shown in the case of sqlite. Therefore JULEA’s key value interface o�ers better key value
performance on fuse �le system metadata than the relational database backend does. This is
somewhat surprising as the same databases should show similar performance on the same
requests.

As the previous key value format from [Kuhn, 2017] is kept this may have been a cause for the
outstanding performance of key value stores as it was originally geared towards them.

The overhead of using bson to obtain a intermediate format of metadata is nearly immeasurable.
Thus it can be recommended if �exibility of the contained values or machine independence is
needed. There was some overhead expected by this format but apparently it takes a very small
amount of time compared to other operations like transfer to the server and accessing its un-
derlying �le system. This however might depend on the number and size of attributes and their
type. If their length varies the metadata value might need to be resized [MongoDB, 2017].

File systems, especially those aiming at HPC use cases, apparently provide room for many
di�erent design decisions as was shown in Section 3.7 and in Chapter 4. This is especially true
for path name resolution where many di�erent approaches exist. Due to the design used, the
obtained results might be more representative for �les systems who use a similar path to value
mapping than those who follow the tree structure. Di�erent approaches exist for �le content as

38

well like some discussed in Chapter 4. Those could cause slightly di�erent results most likely
in the proportion of creates and deletes when multiple segments need to be deleted or another
structure referencing them is put in the inode.

6.2. Future Work

An important open aspect remained the correctness under concurrent conditions. As mentioned
before, the metadata can for example be changed after it is loaded from the key value store so
when putting it back it has missed some updates. If there is a solution at the level of JULEA, the
concept should also be adapted for julea-fuse. By doing that, additional overhead is introduced
to the key value version. Hence the comparison of key value stores and relational databases
could lead to di�erent results with those changes.

An other topic are the methods expected by fuse but which are not implemented yet. This might
not concern the question of the thesis. For example locking might not have a di�erent perfor-
mance on relational databases than on key value stores. However, the fuse implementation in
the state of this thesis still misses functionality from [libfuse, 2023b].

When adding for example hard links, the functionality of relational databases could be used
more extensively. As mentioned before, hard links would result in multiple entries for the same
metadata resulting in multiple tables especially if normal forms [Saake, 2018] are considered.
In this case, in the relational database case tables could be joined. This is in contrast to the key
value store where multiple retrievals of values would be necessary. Another similar case would
be getxattr, listxattr and setxattr from [libfuse, 2023b]. However, those might cause only a
single request to the key value store as the additional properties could be stored in the metadata
value. All in all, relational databases o�er a much more complex interface. This could be maxed
out in future work highlighting the functionality bene�ts in the realm of �le systems.

There are other database types as well, like graph databases[Meier and Kaufmann, 2019] and
are used in [Holupirek, 2012]. If other database types are introduced to JULEA, those might
show a di�erent performance pro�le. Future e�ort could be made to assess their �tting for �le
system metadata.

Another interesting aspect is the possibility to scale the systems. Key value stores can easily be
expanded with additional nodes [Meier and Kaufmann, 2019]. This was not addressed in the
setup the measurements were taken on.

Additionally, the two performances may vary whether the low level version of fuse is used or
not. There the access is done via inodes [libfuse, 2023a]. the data structures inside the relational
database or the hash tables might perform di�erently. Key value stores usually retrieve data
identi�ed with a string like described in Section 2.4.1. This might not be as optimal as relational
databases. Those can construct primary keys using di�erent data types. Hence they could o�er
improved performance in this use case.

Summary

All in all, identifying the changes needed on the existing implementation to add the other
database backend type was a complex task. Currently key value stores outperform relational

39

databases. However with di�erent implementations this deviates. Moreover, di�erent variables
than the latency might be considered in the future.

40

Bibliography

[Alam et al., 2011] Alam, S. R., El-Harake, H. N., Howard, K., Stringfellow, N., and Verzelloni,
F. (2011). Parallel i/o and the metadata wall. In Proceedings of the sixth workshop on Parallel
Data Storage, pages 13–18. (Cited on page 4)

[Andrew S et al., 2015] Andrew S, T., Herbert, B., et al. (2015). Modern Operating Systems.-4th.
Pearson. (Cited on pages 6, 7, 9, 22, 23, 24, and 26)

[Carns et al., 2011] Carns, P. H., Harms, K., Allcock, W. E., Bacon, C., Lang, S., Latham, R.,
and Ross, R. B. (2011). Understanding and improving computational science storage access
through continuous characterization. In Brinkmann, A. and Pease, D., editors, IEEE 27th
Symposium on Mass Storage Systems and Technologies, MSST 2011, Denver, Colorado, USA,
May 23-27, 2011, pages 1–14. IEEE Computer Society. (Cited on page 4)

[Chinner, 2019] Chinner, D. (2019). fallocate(2) — linux manual page. https://man7.org/

linux/man-pages/man2/fallocate.2.html. Accessed: 2023-02-07. (Cited on page 26)

[Chu, 2011] Chu, H. (2011). Mdb: A memory-mapped database and backend for openldap. In
Proceedings of the 3rd International Conference on LDAP, Heidelberg, Germany, volume 35.
(Cited on page 34)

[Eeckhout, 2017] Eeckhout, L. (2017). Is moore’s law slowing down? what’s next? IEEE Micro,
37(4):4–5. (Cited on page 4)

[Eisl, 2019] Eisl, R. (2019). Con�ict aware network �le system based on a relational database.
Master’s thesis, University of Salzburg. (Cited on page 28)

[et al., 2023] et al., D. B. (2023). Rocksdb overview. https://github.com/facebook/rocksdb/
wiki/RocksDB-Overview. Accessed: 2023-03-30. (Cited on page 34)

[fuse, 2023a] fuse (2023a). fuse_�le_info struct reference. https://libfuse.github.io/

doxygen/structfuse__file__info.html. Accessed: 2023-03-30. (Cited on pages 23 and 24)

[fuse, 2023b] fuse (2023b). libfuse libfuse: The reference implementation of the linux fuse
(�lesystem in userspace) interface. https://github.com/libfuse/libfuse. Accessed: 2023-
02-26. (Cited on page 9)

[Hertzsprung, 2007] Hertzsprung (2007). Privilege rings for the x86 microprocessor ar-
chitecture available in protected mode. operating systems determine which processes
run in each mode. https://en.wikipedia.org/wiki/Operating_system#/media/File:

Priv_rings.svg. Accessed: 2023-03-27. (Cited on page 9)

[Holupirek, 2012] Holupirek, A. (2012). Declarative Access to Filesystem Data: New applica-
tion domains for XML database management systems. PhD thesis, University of Konstanz.
(Cited on pages 28 and 39)

41

https://man7.org/linux/man-pages/man2/fallocate.2.html
https://man7.org/linux/man-pages/man2/fallocate.2.html
https://github.com/facebook/rocksdb/wiki/RocksDB-Overview
https://github.com/facebook/rocksdb/wiki/RocksDB-Overview
https://libfuse.github.io/doxygen/structfuse__file__info.html
https://libfuse.github.io/doxygen/structfuse__file__info.html
https://github.com/libfuse/libfuse
https://en.wikipedia.org/wiki/Operating_system#/media/File:Priv_rings.svg
https://en.wikipedia.org/wiki/Operating_system#/media/File:Priv_rings.svg

[IEEE and Group, 2018] IEEE and Group, T. O. (2018). Ieee standard for information
technology–portable operating system interface (posix(tm)) base speci�cations, issue 7.
IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008), pages 1–3951. (Cited on pages 7, 14,
17, 22, 26, and 33)

[Jannen et al., 2015] Jannen, W., Yuan, J., Zhan, Y., Akshintala, A., Esmet, J., Jiao, Y., Mittal, A.,
Pandey, P., Reddy, P., Walsh, L., Bender, M. A., Farach-Colton, M., Johnson, R., Kuszmaul,
B. C., and Porter, D. E. (2015). Betrfs: A right-optimized write-optimized �le system. In
Schindler, J. and Zadok, E., editors, Proceedings of the 13th USENIX Conference on File and
Storage Technologies, FAST 2015, Santa Clara, CA, USA, February 16-19, 2015, pages 301–315.
USENIX Association. (Cited on page 30)

[Kira Duwe and Michael Kuhn, 2021] Kira Duwe and Michael Kuhn (2021). Coupled storage
system for e�cient management of self-describing data formats (cosemos). Technical report,
Otto von Guericke Universität Magdeburg. (Cited on page 13)

[kofemann et al., 2022] kofemann et al. (2022). kofemann/mdbench: simple �lesystem meta-
data operation benchmark. https://github.com/kofemann/mdbench. Accessed: 2023-03-15.
(Cited on pages 2, 16, 24, and 31)

[Kuhn, 2015] Kuhn, M. (2015). Dynamically Adaptable I/O Semantics for High Performance
Computing. PhD thesis, University of Hamburg. (Cited on pages 13, 14, and 25)

[Kuhn, 2017] Kuhn, M. (2017). JULEA: A �exible storage framework for HPC. In Kunkel,
J. M., Yokota, R., Taufer, M., and Shalf, J., editors, High Performance Computing - ISC High
Performance 2017 International Workshops, DRBSD, ExaComm, HCPM, HPC-IODC, IWOPH,
IXPUG, Pˆ3MA, VHPC, Visualization at Scale, WOPSSS, Frankfurt, Germany, June 18-22, 2017,
Revised Selected Papers, volume 10524 of Lecture Notes in Computer Science, pages 712–723.
Springer. (Cited on pages 2, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 31, 33, 34,
and 38)

[Kunchithapadam et al., 2011] Kunchithapadam, K., Zhang, W., Ganesh, A., and Mukherjee,
N. (2011). Oracle database �lesystem. In Sellis, T. K., Miller, R. J., Kementsietsidis, A.,
and Velegrakis, Y., editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 1149–1160. ACM.
(Cited on page 28)

[Li et al., 2017] Li, S., Lu, Y., Shu, J., Hu, Y., and Li, T. (2017). Locofs: a loosely-coupled metadata
service for distributed �le systems. In Mohr, B. and Raghavan, P., editors, Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2017, Denver, CO, USA, November 12 - 17, 2017, page 4. ACM. (Cited on page 29)

[libfuse, 2023a] libfuse (2023a). fuse_lowlevel_ops struct reference. http://libfuse.github.
io/doxygen/structfuse__lowlevel__ops.html. Accessed: 2023-02-07. (Cited on pages 10,
23, and 39)

[libfuse, 2023b] libfuse (2023b). fuse_operations struct reference. https://libfuse.

github.io/doxygen/structfuse__operations.html. Accessed: accessed 2023-02-07.
(Cited on pages 10, 25, 26, 27, and 39)

42

https://github.com/kofemann/mdbench
http://libfuse.github.io/doxygen/structfuse__lowlevel__ops.html
http://libfuse.github.io/doxygen/structfuse__lowlevel__ops.html
https://libfuse.github.io/doxygen/structfuse__operations.html
https://libfuse.github.io/doxygen/structfuse__operations.html

[Luu et al., 2015] Luu, H., Winslett, M., Gropp, W., Ross, R., Carns, P., Harms, K., Prabhat, M.,
Byna, S., and Yao, Y. (2015). A multiplatform study of i/o behavior on petascale supercom-
puters. In Proceedings of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, pages 33–44. (Cited on page 4)

[Meier and Kaufmann, 2019] Meier, A. and Kaufmann, M. ([2019]). SQL & NoSQL databases :
models, languages, consistency options and architectures for Big Data Management. Computer
Science and Engineering | Springer eBook Collection. Springer Vieweg, Wiesbaden, array
edition. 1 Online-Ressource (xvi, 228 Seiten), Illustrationen. (Cited on pages 2, 11, 22, 28,
and 39)

[mongodb, 2023] mongodb (2023). Do things bigwithmongodb at scale. https://www.mongodb.
com/mongodb-scale. Accessed: 2023-03-29. (Cited on page 4)

[MongoDB, 2017] MongoDB, I. (2017). bson_new_from_bu�er(). http://mongoc.org/

libbson/current/bson_new_from_buffer.html. Accessed: 2023-03-30. (Cited on page 38)

[MySQL, 2023a] MySQL (2023a). How mysql uses indexes. https://dev.mysql.com/doc/

refman/8.0/en/mysql-indexes.html. Accessed: 2023-03-30. (Cited on page 33)

[MySQL, 2023b] MySQL (2023b). Innodb locking. https://dev.mysql.com/doc/refman/8.0/
en/innodb-locking.html. Accessed: 2023-03-30. (Cited on page 33)

[MySQL, 2023c] MySQL (2023c). The main features of mysql. https://dev.mysql.com/doc/
refman/8.0/en/features.html. Accessed: 2023-03-29. (Cited on pages 4 and 33)

[Niazi et al., 2019] Niazi, S., Ismail, M., Haridi, S., and Dowling, J. (2019). Hopsfs: Scaling
hierarchical �le system metadata using newsql databases. In Sakr, S. and Zomaya, A. Y.,
editors, Encyclopedia of Big Data Technologies. Springer. (Cited on page 28)

[OLCF, 2023] OLCF (2023). Data storage and transfers. https://docs.olcf.ornl.gov/data/
index.html. Accessed: 2023-03-30. (Cited on page 4)

[Ren and Gibson, 2012] Ren, K. and Gibson, G. (2012). Tablefs: Embedding a nosql database
inside the local �le system. In 2012 Digest APMRC, pages 1–6. (Cited on pages 24 and 29)

[Ren et al., 2014] Ren, K., Zheng, Q., Patil, S., and Gibson, G. A. (2014). Indexfs: Scaling �le
system metadata performance with stateless caching and bulk insertion. In Damkroger,
T. and Dongarra, J. J., editors, International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2014, New Orleans, LA, USA, November 16-21, 2014,
pages 237–248. IEEE Computer Society. (Cited on page 29)

[Saake, 2018] Saake, G. ([2018]). Datenbanken : Konzepte und Sprachen. mitp Verlags, Frechen,
array edition. 1 online resource (1 volume), illustrations. (Cited on pages 12, 21, 24, 25, 33,
37, and 39)

[Schumaker, 2021] Schumaker, A. (2021). copy_�le_range(2) — linux manual page. https:

//man7.org/linux/man-pages/man2/copy_file_range.2.html. Accessed: 2023-02-12.
(Cited on page 26)

[SQLite, 2023a] SQLite (2023a). About sqlite. https://www.sqlite.org/about.html. Ac-
cessed: 2023-03-30. (Cited on page 33)

[SQLite, 2023b] SQLite (2023b). Architecture of sqlite. https://www.sqlite.org/arch.html.
Accessed: 2023-03-30. (Cited on page 33)

43

https://www.mongodb.com/mongodb-scale
https://www.mongodb.com/mongodb-scale
http://mongoc.org/libbson/current/bson_new_from_buffer.html
http://mongoc.org/libbson/current/bson_new_from_buffer.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-locking.html
https://dev.mysql.com/doc/refman/8.0/en/features.html
https://dev.mysql.com/doc/refman/8.0/en/features.html
https://docs.olcf.ornl.gov/data/index.html
https://docs.olcf.ornl.gov/data/index.html
https://man7.org/linux/man-pages/man2/copy_file_range.2.html
https://man7.org/linux/man-pages/man2/copy_file_range.2.html
https://www.sqlite.org/about.html
https://www.sqlite.org/arch.html

[SQLite, 2023c] SQLite (2023c). File locking and concurrency in sqlite version 3. https:

//www.sqlite.org/lockingv3.html. Accessed: 2023-03-30. (Cited on page 33)

[Stender et al., 2010] Stender, J., Kolbeck, B., Högqvist, M., and Hupfeld, F. (2010). Babudb:
Fast and e�cient �le system metadata storage. In 2010 International Workshop on Storage
Network Architecture and Parallel I/Os, pages 51–58. IEEE. (Cited on pages 24 and 29)

[Sven and ElementW, 2019] Sven and ElementW (2019). Structural diagramm of �lesystem in
userspace. https://commons.wikimedia.org/wiki/File:FUSE_structure.svg. Accessed:
2023-02-28. (Cited on page 10)

[Tatebe et al., 2022] Tatebe, O., Obata, K., Hiraga, K., and Ohtsuji, H. (2022). CHFS: parallel
consistent hashing �le system for node-local persistent memory. In HPC Asia 2022: Inter-
national Conference on High Performance Computing in Asia-Paci�c Region, Virtual Event,
Japan, January 12 - 14, 2022, pages 115–124. ACM. (Cited on pages 23, 24, and 30)

[Top500, 2022] Top500 (2022). Top500 list - november 2022. https://www.top500.org/lists/
top500/list/2022/11/. Accessed: 2023-03-30. (Cited on page 4)

[ubuntusers, 2021] ubuntusers (2021). Fuse. https://wiki.ubuntuusers.de/FUSE/. Accessed:
2023-02-26. (Cited on page 9)

[Van Steen and Tanenbaum, 2017] Van Steen, M. and Tanenbaum, A. S. (2017). Distributed
systems. Maarten van Steen Leiden, The Netherlands. (Cited on pages 21 and 22)

[Vangoor et al., 2017] Vangoor, B. K. R., Tarasov, V., and Zadok, E. (2017). To FUSE or not to
FUSE: performance of user-space �le systems. In Kuenning, G. and Waldspurger, C. A.,
editors, 15th USENIX Conference on File and Storage Technologies, FAST 2017, Santa Clara,
CA, USA, February 27 - March 2, 2017, pages 59–72. USENIX Association. (Cited on pages 4,
9, 10, 22, 23, and 25)

[Warnke, 2019] Warnke, B. (2019). Integrating self-describing data formats into �le systems.
Master’s thesis, Universität Hamburg. (Cited on pages 13, 14, 16, 17, 18, 19, 24, 27, and 33)

[Wiese, 2015] Wiese, L. (2015). Advanced Data Management for SQL, NoSQL, Cloud and Dis-
tributed Databases. DeGruyter. (Cited on pages 11 and 24)

44

https://www.sqlite.org/lockingv3.html
https://www.sqlite.org/lockingv3.html
https://commons.wikimedia.org/wiki/File:FUSE_structure.svg
https://www.top500.org/lists/top500/list/2022/11/
https://www.top500.org/lists/top500/list/2022/11/
https://wiki.ubuntuusers.de/FUSE/

Statement of Authorship

I herewith assure that I wrote the present thesis independently, that the thesis has not been
partially or fully submitted as graded academic work and that I have used no other means than
the ones indicated. I have indicated all parts of the work in which sources are used according
to their wording or to their meaning.

I am aware of the fact that violations of copyright can lead to injunctive relief and claims for
damages of the author as well as a penalty by the law enforcement agency.

Magdeburg, April 3, 2023

Signature

45

	Introduction
	Motivation
	Structure of the Thesis

	Background
	File Systems
	POSIX
	Fuse
	Databases
	Key Value Store
	Relational Databases

	JULEA

	Implementation
	Added Functionality
	Metadata
	Abstraction
	Synchronization
	Access Control
	High Level Interface
	Pathname Mapping
	Statefulness
	File Content
	Directories

	Related Work
	Evaluation
	Setup
	Measurements
	Operations on Regular Files
	Operations on Directories

	Implications

	Conclusion
	Conclusion
	Future Work

	Bibliography

