
Bachelor Thesis

Evaluation and Implementation of Cache
Replacement Policies for an Object Store

with Tired Storage

Author

christian.grueneberg@st.ovgu.de

October 26, 2023

First Reviewer:

Prof. Dr. Michael Kuhn

Second Reviewer:

Johannes Wünsche

Supervisor:

Johannes Wünsche

mailto:christian.grueneberg@st.ovgu.de

Abstract

An increasing concern is the widening disparity between processor frequency and memory

latency. To address this issue, di�erent memory technologies are combined in a memory

hierarchy. Fast but expensive memory is used in combination with slower but cheaper memory

to achieve an optimal balance between cost, latency, bandwidth and capacity. In addition to

the memory hierarchy, caching and hierarchical storage management, also known as tiered

storage, are utilized for transferring data between di�erent hierarchy levels.

In this thesis, we implement and evaluate di�erent cache replacement policies for a hierarchical

storage stack.This storage stack is based on the �Y-tree, a write-optimized variant of the B-tree.

We conduct several benchmarks for di�erent workloads, access patterns and also examine

single threaded and multi threaded workloads. In particular, we are interested in how write

optimization a�ects cache performance. Furthermore, we will give a recommendation on which

cache replacement policy should be used for speci�c workloads.

Contents

1. Introduction 1
1.1. Memory Hierarchy . 1

1.2. Caching . 1

1.3. Hierarchical Storage Management . 3

1.4. Summary . 3

1.5. Contribution . 4

1.6. Outline . 4

2. Background 5
2.1. Copy on Write . 5

2.2. �Y-tree . 5

2.3. Haura . 6

2.4. Cache Replacement Policies . 8

2.4.1. Optimal Cache Replacement Policy . 9

2.4.2. FIFO . 9

2.4.3. Least Recently Used . 9

2.4.4. Least Frequently Used . 10

2.5. Improved Cache Replacement Policies . 11

2.5.1. Explicit User Level Hints . 11

2.5.2. Utilizing Deeper History Information 11

2.5.3. Detection and Adaption of Access Patterns 12

2.5.4. Using Machine Learning . 13

2.6. Summary . 14

3. Related Work 17

4. Design and Implementation 21
4.1. DML State Cycle . 21

4.2. Cache Trait . 23

4.3. Implemented Cache Replacement Policies . 24

4.3.1. CLOCK . 24

4.3.2. GCLOCK . 27

4.3.3. CLOCK-Pro . 28

4.3.4. ML-CLOCK . 32

4.4. Summary . 35

5. Evaluation 37
5.1. Setup . 37

5.2. Methodology . 37

5.3. Single threaded . 40

5.3.1. Random read only Benchmark . 40

v

5.3.2. Random 90% read and 10% write Benchmark 41

5.3.3. Random 50% read and 50% write Benchmark 42

5.4. Multi threaded . 43

5.4.1. Random read only Benchmark . 43

5.4.2. Random 90% read and 10% write Benchmark 45

5.4.3. Random 50% read and 50% write Benchmark 48

5.5. Summary . 50

6. Conclusion 53
6.1. Future Work . 54

Bibliography 55

A. Appendix 59

vi

Chapter 1.

Introduction

In this chapter, we present the motivation and research question for our thesis. We begin by

examining the storage hierarchy and its resulting consequences. Next, we explore caching and

hierarchical storage management, which are techniques that rely on the memory hierarchy.

Using this information, we formulate our research question, which we aim to answer in this

thesis. Lastly, we provide a brief outline of the structure of this paper.

1.1. Memory Hierarchy

Since the invention of integrated circuits in 1959, CPU performance has grown faster than

main memory performance. Figure 1.1 shows the improvement in processor performance and

DRAM performance since the 1980s. This leads to the "processor-memory performance gap",

also known as the "memory wall" problem [Wulf and McKee, 1995]. One of the reasons for

this is that in the semiconductor industry, CPU and memory are separate domains and have

been optimized for di�erent goals. CPUs have been optimized for higher clock frequency,

whereas DRAM and hard disks have been optimized primarily for higher memory capacity

[Efnusheva et al., 2017]. Even though the rates of increase in single-core performance have

slowed down and thus the performance gap between processor and memory is growing more

slowly, the use of multi-core processors has increased the bandwidth requirements so that the

main memory must support more memory accesses.

To reduce the processor-memory performance gap, memory is built up hierarchically, as shown

in Figure 1.2. The memory is ordered from fast, expensive and low capacity, which is close

to the processor, to progressively slower, cheaper and higher capacity, which is further away

from the processor. The goal of the memory hierarchy is to develop systems that have enough

fast memory, CPU cache and DRAM to not slow down the CPU signi�cantly and, on the other

hand, have as much memory capacity as necessary provided by using hard disks, solid state

disk or �ash memory without excessive costs.

1.2. Caching

Closely related to the memory hierarchy is caching. Caching refers to a faster and smaller

primary memory in front of a larger but slower secondary memory, so that requested data

can be served faster from the primary memory instead of fetching the data from the slower

memory, which improves latency and throughput and also reduces cost by using less of the

1

Figure 1.1.: Processor-Memory gap [Efnusheva et al., 2017]

faster memory. Caching can also mean that data from a remote memory is stored in a local

memory for faster access, such as web cache. The idea of caching is based on the assumption

of temporal and spatial locality. Temporal locality means that a datum accessed in the past is

likely to be accessed again, and spatial locality means that when a datum is accessed, a nearby

datum in memory is also likely to be accessed. To take advantage of spatial locality, blocks of

data are considered instead of single datum as seen in Table 1.1.

If we include caching in the memory hierarchy so that each faster memory caches the slower

memory below it, we also have a caching hierarchy as shown in Table 1.1. Caching can be

done exclusively in hardware, as is the case with the CPU’s L1 and L2 caches, or exclusively in

software, as with the Web cache, or in a combination of both, as with the virtual memory of

an operating system. Caching is an ongoing research topic, and researchers have developed

various solutions for di�erent use cases and applications.

When the cache is full and a cache miss occurs, we have to decide which cache entry should be

evicted in order to move the requested block into the cache. This is one of the main problems

of caches. If we displace a cache entry that we will need in the near future, we will have

an additional cache miss, which we want to avoid. To decide which cache entry to remove,

heuristics and algorithms, the cache replacement policies, are used.

The advantage of caching is that the latency and bandwidth, or both, are increased. But there

are also drawbacks. If we use caching, we have redundant data copies in each cache which,

on the one hand, means increased power consumption. Each extra copy and the movement of

data consumes additional power. And on the other hand, if we have redundant data, there is

an additional e�ort to keep the data consistent. For example, when a cache entry is modi�ed,

we need to write the data back to the original location, and we need to prevent multiple tasks

from writing to a cache entry at the same time.

2

Figure 1.2.: Memory Hierarchy [Danlash, 2022]

1.3. Hierarchical Storage Management

Hierarchical storage management (HSM), also known as tiered storage, is a data management

method that moves data between levels of the storage hierarchy. The data is automatically

migrated between the storage media based on policies. Frequently used data is moved up the

memory hierarchy to faster and more expensive storage media and infrequently used data

is moved down to slower but cheaper storage media [Lugar, 2001]. Thus, HSM is a trade-o�

between latency and bandwidth on the one hand and cost and capacity on the other hand.

HSM has some similarities to caching. Both move data to faster storage based on policies

and both have the same goal of improving I/O and reduce cost. But there are fundamental

di�erences between them. Caching copies the data that is moved to the faster storage and use

the copy instead of the original data. The original data still continues to reside in the slower

storage. So, if the copy in cache is changed, the changes must be written back to the original

data. HSM, on the other hand, actually moves the data to faster storage. Thus, no write back is

necessary.

1.4. Summary

The growing gap between the clock frequency of the CPU on the one hand and the memory

latency and bandwidth on the other hand lead to di�erent memory technologies being built up

in a memory hierarchy. This hierarchy allows a trade o� between cost, capacity and access

speed.

3

Cache Type What Cached Where Cached Latency in

cycles

Managed By

Registers 4-byte word CPU registers 0 Compiler

TLB Address transla-

tion

On-Chip TLB 0 Hardware

L1 cache 32-byte block On-Chip L1 1 Hardware

L2 cache 32-byte block On-Chip L2 10 Hardware

Virtual Memory 4-KB page Main Memory 100 Hardware + OS

Bu�er Cache Parts of �les Main Memory 100 OS

Network bu�er

cache

Parts of �les Local disk 10,000,000 AFS/NFS client

Browser cache Web pages Local disk 10,000,000 Web browser

Web cache Web pages Remote server

disks

1,000,000,000 Web proxy server

Table 1.1.: Caching Hierarchy [Kumar and Singh, 2016]

Yet, the question arises how the data should be moved in this hierarchy, to achieve optimal

performance. Frequently used data should be located in the fast memory, while rarely used

data should be moved to the slower memory. For this purpose, we have discussed two methods:

caching and hierarchical storage management.

1.5. Contribution

The objective of this thesis is to implement and evaluate di�erent cache replacement policies

for a copy on write optimized hierarchical storage stack. It is of particular interest whether

and how copy-on-write a�ects cache performance and if speci�c policies can be recommended

for certain use cases.

1.6. Outline

We presented the context of this thesis and stated the research objectives in Chapter 1. Then,

in Chapter 2, we provide an overview of topics that are important for understanding this

thesis. For this purpose we will �rst discuss topics related to Haura, in particular �Y-tree,

which is the underlying data structure of Haura and the copy on write resource management

technique. We then discuss the basic cache replacement policies and strategies for improving

them. Afterwards, in Chapter 3, we give a brief overview of work related to the topic of this

thesis. Next, in Chapter 4, we describe the newly implemented cache replacement policies

and explain the changes we had to make to Haura. In Chapter 5, we design and conduct an

evaluation of the newly implemented cache replacement policies. Finally, in Chapter 6, we

summarize the thesis and our results in a conclusion and also suggest potential topics for future

work.

4

Chapter 2.

Background

In this chapter we explain topics that are necessary for the understanding of the work. First,

we describe the resource management technique copy on write. Then we discuss the �Y-tree,

which is a write optimized variant of the B-Tree. Next, an overview of the hierarchical storage

stack Haura is given, which uses the �Y-tree as its central data structure. We then present

several basic cache replacement policies and strategies for improving them.

2.1. Copy on Write

Copy on write is a memory management technique that allows multiple processes to share

data as long as the data is not modi�ed, instead of copying the data for each process. When

the data is modi�ed, a copy is made in a di�erent memory location and the original data

remains unchanged [Ha and Kim, 2022]. Therefore, copy on write can signi�cantly reduce the

amount of memory used for shared data, but at the cost of additional overhead when the data is

modi�ed. Copy on write is used, for example, in �le systems and virtual memory management.

Additionally, copy on write enables the creation of snapshots, which is a read only image of a

data collection that can be used as a backup or checkpoint to restore the state of a �le system

[Peterson, 2002]. The main limitation of copy on write is the fragmentation of memory when

copies are made. This is because the new copies can be scattered across a storage medium,

which increases data access time and results in increased memory usage as long as the original

data and the copy are present.

2.2. �Y-tree

The idea for the �Y-tree was introduced by [Brodal and Fagerberg, 2003] in a study of the trade

o� between insertions and queries for comparison-based external memory dictionaries.

The basis for �Y-trees is the B-tree, which has good performance on queries but su�ers from

poor performance on small writes, as shown in [Bender et al., 2015], because the entire node

must be updated for each small write. However, if we reduce the node size to optimize for small

writes, sequential read performance su�ers because many smaller nodes have to be fetched

from disk instead of fewer but larger ones.

To optimize for both cases, the �Y-tree adds a bu�er to each internal node of size � − �Y with
0 ≤ Y < 1 as shown in Figure 2.1.

5

Figure 2.1.: Structure �Y-tree from [Bender et al., 2015]

As new data is inserted into the �Y-tree, the data is written to the bu�er of the root node as

"insert message". Only when the root node’s bu�er is full, a batch of messages is �ushed down

the tree, preferably to the node with the most pending messages. If a node needs to be split,

the bu�er is also split between the new nodes. When the insert message arrives at a leaf node,

the data is added to the leaf.

This behavior leads to better insertion performance than B-trees, since insertion always occurs

at the root, no search for the correct insertion point is required, and the actual writing of data

is delayed in batches only when enough changes have accumulated in a bu�er. On deletion a

"tombstone message" will be inserted into the tree and will be �ushed down the tree to a leaf,

like an insertion message.

In order to process queries, not only the leaf nodes must be considered as in a B-tree, additionally

the bu�ers of the nodes must be checked to see whether they contain messages relevant for the

queries. To speed up the search in a bu�er for speci�c messages for a key or query, all bu�ers

are organized as self-balanced search trees, like a red-black tree. Thus, the �Y-trees achieve

similar asymptotic I/O costs for queries, but are better for insertions compared to B-trees, as

shown in Table 2.1.

Data structure Insert Point Query Range Query

B-tree log� # log� # log� # + :
�

�Y-tree
log

�
#

Y�1−Y
log

�
#

Y

log
�
#

Y
+ :
�

�Y-tree (Y = 1/2) log
�
#√
�

log� # log� # + :
�

Table 2.1.: The table shows the asymptotic I/O cost for B-tree and �Y-tree. B is the node size

and N the number of stored elements. The parameter Y is the ratio between the

space used for storing pivots and child pointers and the space used a message bu�er.

Originally from [Bender et al., 2015], is shown here in shortened form.

2.3. Haura

Haura is a hierarchical storage stack, which is intended as a research storage stack. It is written

mainly in Rust and has the advantage that all relevant functionalities for implementing, testing

6

and optimizing a memory stack are uni�ed in a single code base [Wünsche, 2022]. Thus, parts

can easily be modi�ed and di�erent approaches can be tested and evaluated against each

other.

In contrast to traditional �le systems, Haura runs in user space rather than kernel space. Also,

Haura uses a key-value and object interface rather than the usual POSIX interface. It can be

used either directly by an application, in which case Haura runs in the process context of the

application, or use JULEA [Kuhn, 2017] as a wrapper. JULEA then runs the Haura instance

detached from the user applications, which means that the user application can be terminated

or new applications can be created and use Haura as long as JULEA is running, resulting in

more �exibility compared to direct use [Wünsche, 2022].

(a) Haura direct usage. (b) Haura usage through wrapper.

Figure 2.2.: These �gures show the two usages of Haura [Wünsche, 2022].

The development of Haura started by comparing the �Y tree with the ZFS and ext4 �le sys-

tems [Wiedemann, 2018]. In this comparison, Haura achieved better write performance for

small random writes and better sequential throughput. Additionally, Haura was extended by

[Höppner, 2021] to include an object storage interface and support for multiple storage levels

while retaining the bene�ts of the �Y-tree.

Haura is structured in layers as shown in Figure 2.3. At the top is the Database Layer which

manages multiple datasets and snapshots. Each dataset provide a key-value interface. Also each

snapshots of a dataset provides a read-only key-value interface. Furthermore, for each dataset

exists an own �Y-tree and a root tree which saves the allocation bitmaps and metadata.

The next layer, the Tree Layer manages the �Y-trees. The database layer sends messages to the

�Y trees consisting of key-value or key-message pairs that the �Y trees process. A message

for a key-message pair can contain arbitrary data or apply arbitrary code on data. Key-value

pairs are stored in leave nodes and key-message nodes are stored in the inner nodes of the tree.

Each node is an object for the Data Management Layer and is tracked individually.

The Data Management Layer(DML) manages objects for the Tree Layer and database layer

which includes caching objects in memory, tracking modi�cations to objects and write back

modi�ed objects to storage devices. Main part of the DML is the Data Management Unit (DMU).

The DMU is shared by all trees and ensures that no irregular state can be reached. It takes care

of critical disk management such as block allocation. In addition, the DMU manages the cache,

which is the main topic of this work.

7

Database

Allocation Handler Dataset

Snapshot

B ε -Tree

Data Management

Allocator

Cache

Storage Pool Compression

Checksum

Parity

HDDHDDHDD HDD HDD

Mirror

HDDHDD HDD

Vdev Layer

Storage Pool Layer

Data Management Layer

Tree Layer

Database Layer

Figure 2.3.: Structure Haura [Wiedemann, 2018]

The Storage Pool Layer is an abstraction over the used storage hardware. Furthermore, the

storage is divided into tiers from Fastest, Fast, Slow to Slowest. The user can decide how the

used hardware falls into these tiers. Also, not all tiers need to be used.

The last layer, the Vdev Layer, is responsible for actually reading and writing data from the

disks. Single disk, multiple disks or RAID-like con�gurations are possible.

2.4. Cache Replacement Policies

Cache replacement policies 1 are used to manage a cache. Which means that cache replacement

policies decide which entries are evicted in the occurrence of a cache miss. For this decision

making, they can use additional metadata or data structures. Selecting an entry for eviction is

non-trivial and signi�cantly a�ects the performance of the cache. Since removing an entry

that will soon be accessed again results in further cache misses. To minimize these subsequent

cache misses, several cache replacement strategies have been developed.

In this section, we �rst explain the theoretically optimal cache replacement policy, and then

we discuss three early developed policies that are still widely used and also form the basis for

further improved cache replacement policies.

1The terms "cache replacement strategies" and "cache replacement algorithm" are used interchangeably in the

sources.

8

2.4.1. Optimal Cache Replacement Policy

The theoretically optimal cache replacement policy is Bélády’s algorithm (also known as OPT or

clairvoyant algorithm) [Belady, 1966]. This algorithm always evicts the cache entry whose next

use is furthest in the future. The problem is that this information is usually not available during

runtime, but only after an application has ended. Even though this optimal algorithm is not

used in any real system, it is useful for theoretical comparison with other Cache replacement

algorithm. Furthermore, many improved cache replacement strategies attempt to approximate

the optimal cache replacement strategy.

2.4.2. FIFO

First in, First out (FIFO) is a simple cache replacement policy. All cache entries are stored in a

queue based on a singly linked list. Each time a cache entry needs to be evicted, the entry that

has been in the cache the longest is removed. This is the entry at the front of the queue, and

any new entry is inserted at the back of the queue. Both operations have a constant O(1) time

complexity. So, before a cache entry is evicted, it has to go through the entire queue.

The advantages of FIFO are that it is easy to implement and has a low runtime overhead.

Because no further metadata needs to be saved for each entry, so on each cache hit we do not

need to update the queue. This is advantageous when multiple tasks can access the cache,

because we do not need locks, since neither the queue nor the metadata is altered. Furthermore,

the absence of metadata and additional data structures make FIFO better suited for cases where

strict size constraints must be met. We will see later that other cache replacement algorithms

have ghost queues or multiple queues that can shrink and grow. So the size of a FIFO cache

is predictable, or rather, there is a minimal memory overhead for FIFO compared to other

replacement strategies.

However, the assumption that the entry with the longest time in the cache is always the

best candidate for removal is far too simplistic and often more advanced cache replacement

algorithms signi�cantly outperform FIFO [Van Den Berg and Gandol�, 1992]. One reason for

this is that it does not distinguish between frequently or recently accessed entries that should

remain in the cache, and new entries that are rarely accessed again. Every entry is treated

equally. This can lead to many unnecessary evictions. Another disadvantage is that FIFO su�ers

from the Bélády’s anomaly [Belady et al., 1969] which means that an increased cache can lead

to an increased cache miss rate. The Least Recently Used replacement policy for example, does

not su�er from the Bélády’s anomaly.

2.4.3. Least Recently Used

Another widely used cache replacement policy is Least Recently Used(LRU). It was �rst men-

tioned in [Denning, 1980]. The idea of LRU is that whenever an entry needs to be evicted, the

entry that has not been accessed for the longest time is evicted.

All cache entries are stored in a priority queue, usually implemented as doubly linked list,

sorted by there last access time. Each new entry is inserted at the front of the priority queue

and the entry at the back of the priority queue is always selected for eviction. In case of a cache

hit, the entry that is in the priority queue is placed at the front of the queue.

9

Compared to FIFO, LRU performs equal or better [Van Den Berg and Gandol�, 1992]. The

reason for this is that in many cases the access distribution is skewed, so that a small number

of cache entries are accessed more frequently than others. As a result of this, the entries that

are frequently accessed are pushed to the top of the priority queue and thus are rarely evicted

from the cache.

A disadvantage, compared to FIFO is, that we have the overhead of additional metadata, the

access time or the approximation of it, for each cache entry. Thus, LRU requires more memory

to store the same number of cache entries. Furthermore, cache hits also cause additional

overhead. This is because a cache hit changes the priority of an entry and thus the order of

priority queue changes too. Especially in cases where multiple tasks use the cache, this must

happen behind a lock to ensure consistency. This can lead to additional waiting times for

multiple tasks that have to wait until the cache hit has been processed.

Another disadvantage is that LRU does not use frequency information. Thus, an entry that has

been accessed frequently but not recently could be evicted for an entry t hat has been accessed

infrequently but recently. An example of that is looping or scanning patterns, like iterating

over an array or searching for a �le. Then a burst of often only once accessed entries, can lead

to the eviction of entries which are accessed more frequently and should stay in the cache.

Despite these drawbacks, LRU is widely used. Partly, because of its comparatively low complex-

ity which in turn provides good performance due to limited additional overhead. Furthermore,

LRU works well for workloads with strong locality and skewed access distribution.

2.4.4. Least Frequently Used

The Least Frequently Used(LFU) policy is based on the idea that a cache entry that has been

used frequently in the past will also be used in the future. Thus, when a cache miss occurs, the

least frequently accessed entry is evicted. In case more then one entry has the same access

count, we have to use FIFO or decide randomly which entry has to be evicted.

All cache entries are stored in a priority queue, usually implemented as doubly linked list or a

min-heap, sorted by their access frequency. The entry with the lowest frequency in cache is at

the back and the entry with the highest frequency in cache is at the front of the priority queue.

As metadata, we have a counter assigned for each cache entry. On a cache hit, the counter for

the entry will be incremented and the entry could change its position in the priority queue.

The advantage of LFU is that frequently accessed entries remain in the cache and with constant

access distributions, LFU has the best cache hit ratio [Einziger et al., 2017]. But LFU has some

serious drawbacks. First, the overhead for maintaining the metadata is higher than for LRU and

FIFO. Also, as with LRU, there is a problem with lock contention when the priority queue is

updated on a cache hit. And second, the access frequency and distribution is not constant over

time. For example, if a cache entry is accessed frequently during the startup of an application

but not thereafter, it may take a long time for the entry to be removed from the cache. The

problem in this case is that LFU do not use recency information. There are two main strategies

to make LFU more applicable in this case. The �rst is aging, which means that the access

counter for each entry is decreased after a certain amount of time. And the second strategy is

to use only a �xed time window to count accesses and after the window restart each access

counter [Karakostas and Serpanos, 2000].

10

LFU is not used as often as LRU. Since it is more complex without performing better in most

cases. However, one important area where LFU outperforms LRU is web caches. This is

because web caches have a highly skewed access distribution with low locality and many

entries accessed only once, [Mahanti et al., 2000].

2.5. Improved Cache Replacement Policies

All cache replacement policies presented in the last section have drawbacks. Bélády’s algorithm

must know the access pattern in advance and has therefore mostly theoretical value. FIFO

su�ers from the Bélády’s anomaly and has higher miss rates than the other presented policies.

LRU has problems with access patterns that have only weak locality, such as loop or scan

patterns. And LFU has a high overhead and only outperforms LRU for highly skewed access

patterns.

To further enhance cache performance, several additional cache replacement policies have been

developed and most of these policies are based on the policies presented so far. The strategies

for improvement can be divided into 4 categories:

1. Explicit user-level hints,
2. Using deeper history information,
3. Detection of access patterns,
4. Using ml-techniques,

which we will discuss in more detail below (strategies 1.-3. from [Jiang and Zhang, 2002],

strategy 4. from [Rodriguez et al., 2021]).

2.5.1. Explicit User Level Hints

The �rst improvement strategy is through user-level hints. This idea was proposed by

[Cao et al., 1994] and [Patterson et al., 1995]. The underlying concept is that the user pro-

vides hints about which cache entries have a low probability of being accessed in the near

future. The problem with this approach is that the user must understand the access pat-

tern in order to provide appropriate hints, which increases the required programming e�ort

[Jiang and Zhang, 2002]. Therefore, user level hints can be a solution in special cases, but they

are less suitable as a general cache replacement policy.

2.5.2. Utilizing Deeper History Information

The second strategy is to use more history information. LRU in particular uses very little

information, only the last reference, to decide which entry to evict.

One example of this approach is LRU-K proposed by [O’neil et al., 1993]. LRU-K works similar

to LRU, but instead of using only the last reference, the Kth-to-last reference is used for the

eviction decision. Usually = 2 is chosen, as it has shown better adaptability to di�erent access

patterns than > 2. With LRU-K, cache entries that are accessed frequently have a higher

chance of remaining in the cache, but entries that are rarely accessed or with a large distance

between accesses, can be evicted quickly. Therefore LRU-K performs better on loops and

11

scanning accesses patterns than a comparable LRU cache. However, LRU-K has the same major

problem as LRU, which is the cost associated with using a priority queue. Any manipulation of

the priority queue requires $ (log(=) operations [Jiang and Zhang, 2002].

The 2Q policy of [Shasha and Johnson, 1994] attempts to achieve the same performance as

LRU-K, but without the $ (log(=) complexity of using a priority queue. Instead of using just

one queue, 2Q uses two queues. An FIFO queue A1 and an LRU priority queue A< as main

cache. Also, the A1 is split into A18= for entries that actually exist in the cache and A1>DC for

entries where only the reference is stored. If a cache hit occurs and the entry is in A1>DC , the

entry is promoted to the main cache A< . If there is a cache hit in A18=, the entry remains in

A18=. Also, for a cache hit in A< , A< behaves like a priority queue and places the entry at

the beginning of A< . The entry for eviction is either the front entry of the A18= queue, if the

length of the A18= is greater then a certain threshold, or the tail of the A< otherwise. Like

LRU-K, 2Q is better suited for looping and scanning access patterns. This is because only once

referenced entries leave the cache quickly. However, the advantage is that 2Q has a constant

time overhead. The disadvantage, on the other hand, is that the length of the A18= and A1>DC
queues is prede�ned. These need to be tuned for each use case to achieve optimal performance.

This limits the use of 2Q as a general cache replacement policy.

Another example is Least Recently/Frequently Used(LRFU) policy [Lee et al., 2001]. LRFU

combines LRU and LFU methods by tracking the frequency and reference for each entry and

using a weighting factor _ to decide which is more important. The problem with this approach

is that the _ is �xed. It is therefore not adaptable to changing access patterns. Furthermore,

the _ parameter is highly dependent on the hardware used and the access pattern. We must

therefore determine the correct _ for each use case. Therefore, LRFU is also not suitable as a

general cache replacement algorithm.

2.5.3. Detection and Adaption of Access Patterns

The third strategy is to identify speci�c access patterns in the history information for certain

entries, based on either temporal or spatial locality, and treat these entries di�erently from the

other entries.

An example of this strategy is Low Inter-Reference Recency Set (LIRS) [Jiang and Zhang, 2002].

Instead of using recency directly like LRU, LIRS uses Inter-Reference recency (IRR), also called

reuse distance. IRR refers to the number of other entries accessed between two consecutive

references to a given entry. This allows the cache entries to be divided into either hot or cold

entries. Hot entries have a low Inter-Reference recency and are likely to be accessed again in

future. They should therefore remain in the cache. And cold entries, on the other hand, have a

high Inter-Reference recency and are unlikely to be accessed again in future, which means that

they can be easily removed without causing many additional cache misses. So we divide the

cache capacity into a smaller part for hot entries and a larger part for cold entries. Furthermore,

a variable number of non-resident cold entries can be stored. The non-resident cold entries are

necessary to track the IRR. LIRS uses one LRU priority queue and one FIFO queue, as shown in

Figure 2.4. The LRU-queue stores all hot, all resident cold and non-resident cold entries. The

FIFO queue stores only the resident cold entries and is used to �nd the entry to be evicted.

Instead of tracking the IRR directly, the position between entries in the LRU priority queue

is used to determine the IRR and to to control when a cold entry converts to a hot entry and

vice versa. The advantage of LIRS is that it eliminates the weakness of LRU for weak locality

12

workloads with relatively low overhead. The disadvantage is that we still have to prede�ne the

ratio between the capacity for hot and cold entries.

Figure 2.4.: Shows the LRU stack and FIFO queue used for LIRS, original from

[Jiang and Zhang, 2002] labeling altered.

Another example is Adaptive Replacement Cache (ARC) [Megiddo and Modha, 2003]. ARC

uses two LRU priority queues, !1 for entries who are accessed only once in the recent past and

!2 for entries accessed at least twice in the recent past. So !1 measures recency and !2 the

frequency. For a cache with the capacity for 2 number of entries, each queue, !1 and !2, can

also hold 2 number of entries. Thus, the cache saves 22 entries, of which 2 are non-resident

entries. To achieve adaptability, the number of resident entries for each queue is not �xed and

changes according to the workload. Each time a cache hit occurs on a non-resident entry in

one of the queues, the number of resident entries for that queue is increased, depending on

the ratio between the number of non-resident entries of each queue. Also, whenever a cache

hit occurs on an !1 entry, whether resident or non-resident, it is removed from !1 and added

to !2. So, depending on the workload and thus the non-resident entries being accessed, ARC

behaves more like LRU or LFU. The signi�cant advantage of ARC is that it is adoptable and has

no parameters like LIRS or 2Q that need to be manually optimized. Also, the space overhead is

still low with only 0.25 percent of the cache size [Megiddo and Modha, 2004].

2.5.4. Using Machine Learning

The last strategy has emerged only in recent years and seeks to incorporate machine learning

techniques to learn the underlying access pattern to increase the hit rate. This can be done

either by online learning, where learning occurs during execution and is adoptable to changing

13

workloads, or by o�ine learning, where parameters are learned before execution using a

prede�ned data set.

An example of this strategy is fuzzy page replacement algorithm by [Akbari Bengar et al., 2020],

which uses fuzzy c-means, an unsupervised machine learning technique, to �nd clusters in all

cache entries based on the frequency, recency and time di�erence between two consecutive

accesses for each entry. Each time an entry needs to be evicted, the entry with the greatest

distance to all cluster centers is evicted.

Another example is proposed by [Choi and Park, 2022] which uses Seq2Seq network, a type of

recurrent neural network designed for handling sequence data. The history of the last accessed

cache entries is used to predict a sequence of future accesses. The predicted sequence is then

applied to conventional cache replacement algorithms, like LFU or LRU, to prevent unnecessary

evictions.

2.6. Summary

The research question of this thesis concerns cache performance for a copy on write optimized

hierarchical storage stack. As an example of such a storage stack, we use Haura, which uses

�Y-tree, a write optimized version of B-tree, as the underlying data structure. The management

of the data in Haura is centrally performed by the DMU, the Data Management Unit. For this

purpose, the DMU uses a cache containing the data that is currently being used.

The main di�culty with caches is how to decide which entry to evict. Because evicting entries

that will be needed in the near future leads to further cache misses and thus to lower cache

performance. Therefore, cache replacement policies are used to decide which entry should

be evicted from the cache. Cache replacement policies can use additional data structures or

per-entry metadata to guide their decision. Various cache replacement policies have been

developed, which can range from rather simple queue based policies to policies based on

complex heuristics or machine learning.

We looked at four early developed policies. The �rst was the Bélády’s algorithm or optimal

cache replacement policy, which had only theoretical value and can be used to determine the

optimal achievable cache performance after the execution of an application. The next policy

was FIFO, which always evicts the entry that has been in the cache the longest. FIFO is easy to

implement, but su�ers from the Bélády’s anomaly and poor performance in many use cases.

LRU uses recency to decide which entry should be evicted and shows good performance in cases

of strong locality. The disadvantage of LRU is its poor performance under weak locality, such

as loop and scan access patterns. The last policy was LFU, which uses frequency information

for eviction decisions. LFU has good performance in the case of skewed access distributions

and also performs better than LRU on loop and scan access patterns. The disadvantage of LFU

is the higher complexity compared to LRU and FIFO.

All four cache replacement strategies we examined have some weaknesses. Therefore, we have

considered strategies for improved cache replacement policies. We �rst considered explicit

user level hints, which can be useful in certain cases, but are not portable to di�erent hardware

or adoptable to di�erent use cases. Hence, they are not suitable as a general cache replacement

policy.

14

Another strategy we considered was using more historical information. This could either mean

tracking more meta data for each cache entry, like LRFU, or the using of ghost entries, which

are entries where only the meta data or a reference to the data stays in the cache, like 2Q.

The third strategy we considered was to identify speci�c access patterns and adopt the behavior

of the cache accordingly. One example of this strategy is LIRS, which uses the Inter-Reference

Recency to categorize the cache entries in hot and cold entries. LIRS keeps the hot entries

in the cache and prefers to evict the cold entries. Another example is ARC, which uses two

queues. One for entries that have been accessed once in the recent past, and a second queue

for entries that have been accessed at least twice in the recent past. The ratio between stored

entries for both queues is not �xed and a heuristic is used to decide which queue should be

stored more entries. This allows ARC to be adapted to di�erent use cases.

The last strategy we considered, using machine learning to make eviction decisions, is a

relatively new trend that has emerged in recent years. The used ml-techniques range from

simple models with low overhead, which are suitable for online learning, to more sophisticated

techniques with pre-trained neural networks.

Overall, cache replacement policies are a current research topic, which is becoming even

more important due to the widening processor memory gap. New opportunities are emerging

through the use of increasingly better ML techniques. Nevertheless, there is still no general

best policy that works in all use cases and can adapt to changing access patterns.

15

Chapter 3.

Related Work

In this chapter, we present related work. In addition to Chapter 2, we present current cache

replacement policies that are designed to increase scalability and are intended to be used in

multi-threaded applications.

It’s Time to Revisit LRU vs FIFO by [Eytan et al., 2020]

This paper the authors proposes to reevaluate the assumption that LRU has better performance

than FIFO, as stated in [Van Den Berg and Gandol�, 1992]. There were two main reasons for

this reevaluation. First, caches are getting increasingly larger and managing the cache metadata

can not be done entirely in the main memory. As a result, the management will be partially

shifted to persistent storage media. In this case, FIFO can be the better choice since only the

front and the end of the FIFO queue need to be in main memory and no additional metadata

has to be updated. This means that the largest part of the FIFO queue can be swapped out of

the main memory. The second reason is that the emergence of new workloads could mean

that old assumptions no longer apply. Cache replacement policies in the past were designed

for workloads around memory, �les and block storage. But new workloads for big data and

machine learning could have di�erent characteristics. The authors concluded that, especially

for large caches, FIFO may be a better choice than LRU because of the lower overhead. However,

for more traditional workloads where the cache �ts in the main memory, LRU is still the better

choice.

FIFO can be Better than LRU: the Power of Lazy Promotion

and Quick Demotion by [Yang et al., 2023]

Although FIFO is a simple to implement cache replacement algorithm with O(1) complexity for

insertion and removal and therefore provides good throughput and good scalability. The major

drawback was the lower hit rate compared to LRU-based algorithms. The authors of this paper

[Yang et al., 2023] show that FIFO can achieve comparable performance to LRU based cache

replacement algorithms. To improve FIFO, they used Quick Demotion and Lazy Promotion.

Quick Demotion is based on the observation that often newly inserted entries also leave the

cache quickly. To implement this, the cache is divided into a large main FIFO queue that covers

90% of the capacity and a smaller FIFO queue, the QD queue, covers 10% of the cache capacity.

17

Furthermore, there is a ghost queue with the same capacity as the cache, where the reference

to the evicted entries is stored. So newly inserted entries are added to the QD queue. When the

QD queue reaches its capacity, the entry at the front is evicted and added either to the ghost

queue if it was not referenced during its time in the QD queue, or to the main FIFO queue if

it was referenced. Also, if a cache miss occurs and that entry is in the ghost queue, it will be

directly added to the main FIFO queue. The idea of Quick Demotion is not new and some cache

replacement policies use similar approaches, like ARC or 2Q. However, the di�erence is that

this approach allows for an even quicker eviction of newly inserted entries. Besides, Quick

Demotion can be used in conjunction with di�erent cache replacement policies. This way,

Quick Demotion is used for newly inserted entries, while the main cache follows a di�erent

cache replacement policy, not necessarily a FIFO.

Lazy promotion attempts to keep frequently accessed entries in the cache with minimal over-

head. To achieve this, promotion occurs only on eviction, not on cache hits as in LRU and LFU,

which reduces the overhead of processing the metadata. An Example for this would be the

reinsertion of referenced entries to the FIFO queue, also called second chance policy.

Furthermore, the authors propose modular cache replacement policies where a state of the

art cache replacement policy is used as the main cache and other techniques such as Quick

Demotion and Lazy Promotion can be added to improve this replacement policy.

FrozenHot Cache: Rethinking Cache Management for

Modern Hardware by [Qiu et al., 2023]

In this paper the authors propose a method to increase the scalability for list based cache

replacement policies for applications with skewed accesses distribution. For this purpose, the

cache is divided into two parts, the frozen cache and the dynamic cache. The frozen cache is

intended to contain the hot entries and should improve throughput by eliminating promotion

and locking. The dynamic cache, on the other hand, is used for workload adaptation and works

like a regular list-based cache, such as LRU or LFU. The FrozenHot cache works in three phases

which are repeated periodically. The �rst phase is the learning phase, which is used to learn

the entries that should be placed in the frozen cache. Also, the ratio between frozen cache and

dynamic cache capacity is decided during this phase and can adopt to changing workloads.

The second phase is the construction phase which is used to build the Frozen Cache. The third

phase, which is longer than the other two phases, is the frozen phase. During this phase, the

frozen cache remains �xed to allow faster access on cache hits without lock contention. Overall,

this is an interesting approach for a scalable cache in multi threaded applications.

TinyLFU: A highly e�icient cache admission policy by

[Einziger et al., 2017]

The authors of this paper propose a new frequency based cache replacement policy W-TinyLFU,

which uses a bloom �lter to approximate the frequency information for the cache entries

and is speci�cally designed for skewed access distributions. So, even for large caches that

do not �t entirely in the main memory, the bloom �lter is small enough to �t and allows the

18

management of the metadata in main memory even for large caches. W-TinyLFU consists of

three components. First, the window, a FIFO queue, into which new cache entries are inserted.

This queue is relatively small, ranging from 1% of the cache capacity. The second component is

the main cache, which makes up the rest of the capacity. The Bloom �lter is located between

the two. Every time the window queue reaches its limit. The front entry of the window, the

window victim, is checked through the bloom �lter if this entry should be promoted to the

main cache by comparing the window victim with the possible victim entry from the main

cache. When the frequency estimation for the window victim is higher than the main cache

victim, the window victim will be promoted to the main cache and the main cache victim

will be evicted. Otherwise, the window victim will be evicted. The window acts like a Quick

Demotion method, so that newly inserted entries can leave the cache quickly. The advantage of

W-TinyLFU is that it does not require ghost entries, which reduces the management overhead

and space requirements for the cache.

Summary

For this work, we speci�cally investigated cache replacement policies that can be easily inte-

grated into an existing code base and are also suitable for multi-threaded applications.

The paper by [Eytan et al., 2020] shows that with the emergence of new workloads, such as

machine learning, and increasing cache sizes, assumptions such as the independent reference

model may not apply. In particular, the authors conclude that FIFO may be a better choice than

LRU in cases where the cache does not �t in the main memory.

The work of [Yang et al., 2023] is interesting because not only does it present a cache re-

placement policy based on simple FIFO queues, which is easy to implement and scalable, but

also because the approaches of Quick Demotion and Lazy Promotion can be applied to other

cache replacement policies. For future work, Quick Demotion could be added to the already

implemented cache replacement policies.

The FrozenHot cache by [Qiu et al., 2023] achieves scalability by periodically "freezing" a

portion of the cache. This a new approach that should be investigated further. Also, FrozenHot

can be combined with di�erent list-based cache policies, such as LRU or LFU.

The last cache replacement policy we considered was W-TinyLFU by [Einziger et al., 2017],

which is a scalable variant of LFU. The better scalability compared to LFU is achieved by

compactly handling the metadata in a bloom �lter. Thus W-TinyLFU should be considered for

large caches with skewed access distribution.

19

Chapter 4.

Design and Implementation

In this chapter, we describe the cache replacement strategies that we implemented in Haura

and also the changes we had to make to Haura to implement them. First, we consider the

DML state cycle (Section 4.1), since the behavior of the DMU, and thus the cache, follows it.

After that, we are looking at the cache trait, the interface that any cache implementation must

follow. Lastly, we examine all the cache replacement strategies that have been implemented.

Starting with CLOCK, which was already implemented, followed by the newly implemented

cache replacement policies GCLOCK, CLOCK-Pro and ML-CLOCK.

4.1. DML State Cycle

The task of the DML is to manage objects for the tree layer. This includes reading objects from

the disk, storing them in the main memory, tracking changes and writing them back. This is

done by a single DMU which is shared between all trees of the upper layer. Thus, the DMU is

also responsible for the management of the cache.

To accomplish all this, objects must be uniquely identi�able. All unmodi�ed and all on-disk

DML objects are identi�ed by an ObjectPointer.

1 pub struct ObjectPointer <D> {

2 pub(super) decompression_tag: DecompressionTag ,

3 pub(super) checksum: D,

4 pub(super) offset: DiskOffset ,

5 pub(super) size: Block <u32 >,

6 pub(super) info: DatasetId ,

7 pub(super) generation: Generation ,

8 }

Listing 4.1: ObjectPointer struct

The struct �elds offset, size, checksum and decompression_tag, in Listing 4.1, are used to

read an object from disk and decompress it. The info �eld can be used to store additional tags

for an object. And the last �eld generation is used to track the age of an object.

The DML objects can be called by their unique ObjRef. This reference, shown in Listing 4.2,

equals to the state of an object at the last access. Thus, four states are possible: unmodi�ed,

modi�ed, in write back or incomplete. If an object is unmodi�ed, it can be identi�ed by its

21

ObjectPointer and when the object is either modi�ed or in write back, objects are given a unique

Modi�edNodeId for identi�cation. The incomplete state, as seen in Listing 4.2, is an intermediate

state achieved only by either serialization during evicting an object to disk or deserialization

during fetching an object from disk. Any object in incomplete state reaches either the on-disk

state or the unchanged state in the DML cycle. The incomplete state is only used to control

internal processes within Haura.

1 pub enum ObjRef <P> {

2 Incomplete(P),

3 Unmodified(P, PivotKey),

4 Modified(ModifiedObjectId , PivotKey),

5 InWriteback(ModifiedObjectId , PivotKey),

6 }

Listing 4.2: ObjRef enumeration, parameter P equals ObjectPointer<D>

Figure 4.1.: DML state cycle, [Wiedemann, 2018]

The DMU manages the cache and the states of each ObjRef as shown in 4.1. The cycle starts

with the creation of an object in modi�ed state. When the DMU starts the write back of the

object, the state is changed to in write back state. If the object is modi�ed during write back

through the steal function, it changes the state back to modi�ed. When the write back is

�nished, the object state changes to unmodi�ed. An unmodi�ed object can either change the

state to modi�ed if the object has been modi�ed or evicted from cache to disk. And lastly, any

object on disk can be fetched in cache and will be in unmodi�ed state.

For the cache, all objects are managed with a unique ObjectKey, as shown in Listing 4.3. These

ObjectKey are from the ObjRef for each cache entry. Objects in incomplete state are not stored

in cache.

22

1 pub enum ObjectKey <G> {

2 Unmodified { offset: DiskOffset , generation: G },

3 Modified(ModifiedObjectId),

4 InWriteback(ModifiedObjectId),

5 }

Listing 4.3: ObjectKey enumeration

4.2. Cache Trait

The DML state cycle and the fact that the cache is managed by the DMU place additional

demands on the cache. We see this in the cache trait, Listing 4.4.

The �rst di�erence is that we have an explicit evict function. In most cache implementations,

evict is a private function that the cache itself calls. In our case, however, the DMU must call

the evict function, not the cache itself. Furthermore, the evict function must take into account

that there are cache entries that are pinned i.e. in write back or modi�ed state and therefore

cannot be removed from the cache. Also, the DMU can remove speci�c cache entries, Listing 4.4

line 6 and line 7. The remove()-function is used for unmodi�ed entries and force_remove() for

pinned entries.

1 trait Cache {

2 fn new();

3 fn contains_key ();

4 fn get();

5 fn get_mut ();

6 fn remove ();

7 fn force_remove ();

8 fn change_key ();

9 fn force_change_key ();

10 fn evict ();

11 fn insert ();

12 fn iter();

13 fn size();

14 fn capacity ();

15 fn stats ();

16 fn verify ();

17 }

Listing 4.4: Simpli�ed Cache trait without type aliases, generics, function parameters and

function return types.

The second di�erence is that it must be possible to change the key for cache entries. Because

an object in cache can change its state. Therefore, we have two functions, Listing 4.4 line 8 and

line 9. Again two functions for unmodi�ed and pinned entries.

23

Another di�erence is that the cache must be able to handle cache entries of any size. The

handling of cache entries of arbitrary size is managed by the DMU. Each fetched entry is

always inserted into the cache, and then the eviction function is invoked until the cache

capacity is again below the speci�ed cache size. So the cache size is a soft limit that can be

temporarily exceeded, not a hard limit, which would mean that the eviction function is called

before inserting, so that the cache size is never exceeded.

Furthermore, we have added the get_mut()-function, Listing 4.4 line 5, since the get()-function

does not allow that the state of the cache changes, respectively, atomics are used and thus a

read-lock is su�cient.

But for ML-CLOCK, it is necessary that we can change the cache. As we will show in Sec-

tion 4.3.4, ML-CLOCK uses two linked lists. When a cache hit occurs that also modi�es the

entry, the modi�ed entry is evicted from one linked list and inserted into the other linked list.

This movement cannot be realized with atomic operations. Thus, an exclusive write-lock is

necessary for this case. Therefore, we implemented get_mut()-function that uses an exclusive

write-lock.

4.3. Implemented Cache Replacement Policies

In this section, we examine the implemented cache replacement policies. We have limited

ourselves to clock based cache replacement policies since they have a lower overhead and

better scalability compared to most list-based cache replacement policies. Since clock-based

replacement strategies try to do as little work as possible when cache hits occur and do most

of the work during the eviction of an entry, which should be infrequent.

We followed the improvement strategies from the Section 2.5 in selecting the cache replacement

policies to implement. The CLOCK policy was already implemented and is an approximation

of LRU. The next policy we consider is GCLOCK, a generalization of CLOCK that uses more

historical information. CLOCK-Pro is an example of a cache replacement policy that recognizes

access patterns. It uses the Inter-Reference recency to distinguish between hot and cold entries

and handle these entries di�erently. The last implemented cache replacement policy, ML-

CLOCK, is an example of a policy that uses machine learning. A model is trained based on the

removed entries and the cache hits. This model is then used to �nd the entry for the eviction.

4.3.1. CLOCK

Clock cache was introduced by F.J.Corbató [Corbato et al., 1968] for the Multics operating

system and was originally intended to use for the page replacement management for virtual

memory. It is an approximation of the LRU (Least Recently Used) policy, but with a low runtime

overhead.

Unlike previous cache replacement algorithms, clock uses a circular linked list with a "hand" as

a pointer to the current entry. For our implementation in Haura we use a single linked circular

list. The hand marks the head of the list and instead of moving the entries through a queue,

like in LRU and LFU, the hand is moved. Also, each entry has a reference bit that is initially set

to 0 and is set to 1 on a cache hit for that entry.

24

Figure 4.2.: Example for circular list in CLOCK.

Listing 4.5 shows the steps during the request of an entry. To �nd an entry to evict, we look at

the entry to which the hand is pointing. If the reference bit for this entry is 0, we have found

the entry to be evicted. If the reference bit is 1, we set the reference bit to 0 and move the

hand to the next entry. These steps are repeated until an entry is found whose reference bit is

set to 0 and which can thus be evicted. New insert entries are placed behind the hand which

represents the tail of the list, if we see the hand as the head of the list.

25

1 �=?DC

2 Clk: Clock

3 entry: entry on I/O request

4

5 if Clk.contains(entry) == true then

6 // cache hit

7 if entry.referenceBit == false then

8 entry.referenceBit = true

9 end if

10 else

11 // cache miss

12 if Clk.isFull () == true then

13 // evict one entry

14 while Clk.isFull () == true

15 if Clk.hand.referenceBit == true then

16 // second chance if reference bit was set

17 Clk.hand.referenceBit = false

18 Clk.hand = Clk.hand.next

19 else

20 // found entry for eviction

21 evict -candi = Clk.hand

22 Clk.hand = Clk.hand.next

23 Clk.evict(evict -candi)

24 end if

25 end while

26 end if

27 // insert entry to clock

28 Clk.insert(entry)

29 end if

30 return entry

Listing 4.5: CLOCK replacement algorithm in pseudocode.

For our implementation in Haura, we additionally need to handle the case where the entry

to be evicted is pinned and therefore cannot be cleared. When this case occurs, we spare the

entry, increment the hand, and start the search for the next entry to be evicted from there.

The advantage of CLOCK is that it does not have the problem of lock contention during cache

hits, as LRU and LFU do. This is because CLOCK does not have to maintain a priority queue

and the update of the reference bit can be done by atomic operations. Therefore, no exclusive

lock is required for a cache hit and as a result, CLOCK is more scalable than LRU and LFU in

terms of the number of tasks accessing the cache.

Since CLOCK is an LRU approximation, it also has the same disadvantage. The weaker perfor-

mance on workloads with weak locality, like scanning and looping.

26

4.3.2. GCLOCK

The GCLOCK replacement policy [Smith, 1978] is a generalization of CLOCK policy. However,

the principle is already mentioned for the �rst time in [Corbato et al., 1968]. Like CLOCK,

GCLOCK uses a circular linked list with one hand. But instead of only using one reference

bit, a reference counter associated to each cache entry, is used. When a cache hit occurs, the

reference counter is incremented up to times. The parameter can be chosen arbitrarily.

Also, like CLOCK, to �nd an entry for eviction we look at the entry the hand points to. If

the reference counter for this entry is 0, that entry is evicted. Otherwise, we decrement the

reference counter and move the pointer to the next entry until we �nd an entry with a reference

counter of 0. The Listing 4.6 shows the steps during the request for an entry.

1 �=?DC

2 Clk: Clock

3 entry: entry on I/O request

4 K: Number of max references stored per entry

5

6 if Clk.contains(entry) == true then

7 // cache hit

8 if entry.referenceCount < K then

9 entry.referenceCount += 1

10 end if

11 else

12 // cache miss

13 if Clk.isFull () == true then

14 // evict one entry

15 while Clk.isFull () == true

16 if Clk.hand.referenceCount > 1 then

17 // decrease reference count

18 Clk.hand.referenceCount -= 1

19 Clk.hand = Clk.hand.next

20 else

21 // found entry for eviction

22 evict -candi = Clk.hand

23 Clk.hand = Clk.hand.next

24 Clk.evict(evict -candi}

25 end if

26 end while

27 end if

28 // insert entry to clock

29 Clk.insert(entry)

30 end if

31 return entry

Listing 4.6: GCLOCK replacement algorithm in pseudocode.

When we choose = 0, GCLOCK works like a FIFO policy. For = 1, GCLOCK works as

an approximation to the LRU policy and is the same as the CLOCK policy. Thus, CLOCK is

27

a special case of the GCLOCK policy. If we choose > 1, we get an approximation to the

LFU policy, but with the addition of a built-in aging mechanism. This is because the reference

counter is decremented when the hand passes an entry. For our implementation, we use = 2

because [Corbato et al., 1968] has shown that this is a good trade o� between performance and

additional overhead.

4.3.3. CLOCK-Pro

The CLOCK-Pro cache replacement policy [Jiang et al., 2005] combines the e�ciency from

CLOCK policy with the performance improvements from LIRS [Jiang and Zhang, 2002]. The

basic idea of CLOCK-Pro is the same as in LIRS, which is to categorize cache entries into hot

and cold entries based on Inter-Reference recency. The hot entries always stays in cache and

the cold entries allow a quick eviction of rarely accessed entries. Also, like LIRS, CLOCK-Pro

uses non-resident cold entries to track history information. However, CLOCK-Pro, unlike LIRS,

is adoptable because it does not require a prede�ned parameter to control the number of hot

and cold entries.

To achieve better e�ciency than LIRS, CLOCK-Pro combines the LRU priority queue and

a FIFO queue of LIRS in a circularly linked list. And instead of using only one hand, as in

CLOCK, three hands are used to provide the functions of LIRS, as shown in Figure 4.3. For

our implementation, we use a circular doubly linked list instead of a circular singly linked list,

like in CLOCK. Because in some cases we need to move a hand one entry backwards (move to

predecessor) to correctly implement the motion of all hands. Since the hands should not point

to the same entry.

Figure 4.3.: Example of the circular list for CLOCK-Pro. Hot entries marked with "H", cold

entries with "C" and non-resident cold entries are shadowed. The "
√
" marks refer-

enced entries.

28

For each entry we need to store additional metadata. This includes whether it is a hot or cold

entry, is it resident or non-resident in the cache, has it been referenced in the near past, and

is the entry in the test phase. Each hot entry is always resident and not in the testing phase.

Cold entries, on the other hand, may be resident or non-resident and may or may not be in the

testing phase. Also, all newly inserted entries are resident cold entries in the test phase. Both

can be referenced or not. The test phase is used to give cold entries the chance to turn into hot

entries. As we will see in a moment.

TheHandℎ>C marks the tail of the list and therefore points to the last hot entry. Also,Handℎ>C
turns unreferenced hot entries into cold entries and removes the reference for referenced hot

entries when it passes over them.

The Hand2>;3 is used to �nd the entry for eviction. In this respect Hand2>;3 operates like the

hand in CLOCK. This means that Hand2>;3 will traverse all entries until it �nds a resident

cold entry that is not referenced and thus can be evicted. If the entry to be evicted is in the

test phase, it remains in the cache as a non-resident entry, if it is not in the test phase, it is

completely evicted from the cache. So if there are only hot entries in the cache, we must �rst

convert hot entries to cold entries in order to evict an entry. Furthermore, Hand2>;3 turn

referenced cold entries in the test phase to hot entries. This is because the reference during

the test phase means that the Inter-Reference recency for this entry is low enough to be a

categorized as an hot entry.

And the HandC4BC marks the last entry in the test phase and ends the test phase for all resident

cold entries when it moves over them. It also evicts passed non-resident cold entries from

the cache. The reason for this is that non-resident cold entries that have not already been

converted to hot entries have a high Inter-Reference recency and therefore should not become

hot entries.

The Listing 4.7 shows the steps during the request for an entry. What we see is that all hands

work together to �nd an entry for eviction, Listing 4.7 line 12 to line 65.

29

1 �=?DC

2 Clk: Clock

3 entry: entry on I/O request

4

5 if Clk.contains(entry) == true then

6 // cache hit

7 if entry.referenceBit == false then

8 entry.referenceBit = true

9 end if

10 else

11 // cache miss

12 if Clk.isFull () == true then

13 while Clk.countHot + Clk.countCold >= Clk.capacity

14 // run cold -hand to find evict candidate

15 evict -candi = Clk.coldHand

16 if evict -candi.coldBit == true then

17 if evict -candi.referenceBit == true then

18 // turn evict -candi to hot entry

19 evict -candi.hotBit == true

20 evict -candi.coldBit == false

21 Clk.countHot += 1

22 Clk.countCold -= 1

23 else

24 // turn resident Cold entry to non -resident

↩→ Cold entry

25 // only retain key and metadata

26 Clk.turnNonResident(evict -candi)

27 Clk.countCold -= 1

28 Clk.countTest += 1

29 end if

30 4=3 8 5

31 // move test hand if necessary

32 while Clk.countTest > Clk.testCapacity

33 // test hand turns resident cold entry to

↩→ non -resident cold entry

34 // if still in test -period

35 entry = Clk.testHand

36 if entry.testBit == true then

37 Clk.testHand = Clk.testHand.next

38 Clk.removeNonResidentEntry(entry)

39 Clk.countTest -= 1

40 if Clk.coldCapacity > 1

41 Clk.coldCapacity -= 1

42 end if

43 end if

44 Clk.testHand = Clk.testHand.next

45 end while

30

46 // move cold hand

47 Clk.coldHand = Clk.coldHand.next

48 // move hot hand if necessary

49 while Clk.countHot > Clk.capacity - Clk.coldCapacity

50 // hot hand removes reference bit on hot entry

51 // or turn not referenced hot entry to cold entry

52 entry = Clk.hotHand

53 if entry.hotBit == true then

54 if entry.referenceBit == true then

55 entry.referenceBit == false

56 else

57 entry.hotBit = false

58 entry.coldBit = true

59 Clk.countHot -= 1

60 Clk.countCold += 1

61 end if

62 end if

63 Clk.hotHand = Clk.hotHand.next

64 end while

65 end while

66 Clk.insert(entry)

67 end if

68 return entry

Listing 4.7: CLOCK-Pro replacement algorithm in pseudocode.

For a cache with capacity < applies < = <2 + <ℎ. Here <2 is the capacity for resident cold

entries and <ℎ is the capacity for hot entries. Furthermore, at most < non-resident cold entries

can be stored. So that the cache’s actual size can be at most 2< entries. To achieve adaptability,

the number of hot and cold entries is not �xed. The capacity for resident cold entries, <2 is

increased by one, if a cold entry is accessed during its test phase and <2 is decreased by one,

if a cold entry leaves its test phase without being re-accessed. As we see in Listing 4.7 the

actual hand movements are triggered by the count of hot and cold entries and the capacity for

hot and cold entries. This changes the behavior of CLOCK-Pro depending on the underlying

workload.

When <2 is large, CLOCK-Pro behaves similarly to LRU. But if <2 is small it behaves like LIRS.

The small <� leads to a quicker eviction of newly inserted entries and the entries with low

Inter-Reference recency, hot entries, have a higher chance to stay in cache. Thus, in theory,

CLOCK-Pro has the advantage of LRU for workloads with strong locality and the advantages

of LIRS for workloads with weak locality.

In our implementation in Haura, we have to modify the CLOCK-Pro, due to the fact that the

DMU manages the cache. So we can not turn non-resident cold entries to hot entries, which

are always resident. Because this would imply that the cache tells the DMU what to do and not

the other way around.

Furthermore, the treatment of a pinned entry during eviction, is more complicated than for

CLOCK and GCLOCK. We have already seen that for eviction all pointers work together. If the

entry intended for eviction remains in the cache, it could happen that a hand gets stuck on

31

this entry, since the entry is pinned it cannot be removed. This can lead to an endless loop.

To prevent this, this entry is removed and temporally saved. So that the hands can work as

intended. If it then occurs that the entry is pinned, the entry is again inserted into the cache.

4.3.4. ML-CLOCK

The last cache replacement policy implemented is ML-CLOCK by [Cho and Kang, 2021] and

follows the recent trend of incorporating machine learning techniques. The idea for ML-CLOCK

is to use recency and frequency information for eviction. In order to achieve adaptability, we

cannot use a �xed weighting parameter as we have seen with LRFU [Lee et al., 2001]. If the

weighting parameter is �xed, we cannot adapt to the access pattern. So, instead of using a

�xed parameter to decide what is more important, recency or frequency, ML-CLOCK learns

the weighting parameter from previous decisions and is therefore adaptive.

In addition, ML-CLOCK is designed to minimize writes to the underlying storage devices. The

motivation for this is that write operations take more time than read operations. Also, some

memory types, like �ash memory, can only write in blocks. Thus, we can minimize write

operations, if we manage to write back adjacent data blocks, instead of writing back data

scattered across a storage device.

For each entry we have a reference bit, a reference counter and a time stamp of the last

accesses as metadata. Also, the entries are categorized into clean (unmodi�ed) entries and

dirty (modi�ed) entries. And in contrast to the other implemented cache replacement policies,

ML-CLOCK uses two circular linked lists. One for the clean entries which we refer to as

clean-clock and a second for the dirty entries, which we will refer to as dirty-clock which is also

sorted by the logical block address for each entry. Both circular lists have one hand, the c-hand

for the clean-clock and the d-hand for the dirty-clock. When the d-hand moves to the next

entry, it moves to the next entry which has the closest address in the dirty clock. This ensures

that sequential blocks are written back, if possible. Furthermore, we use a ghost queue which

saves the metadata of evicted entries and is used to train the single-layer perceptron(SLP).

At most, the ghost queue can store as many entries as the cache, clean-clock and dirty-clock

together.

ML-CLOCK uses a single-layer perceptron(SLP), as a binary classi�er, which in our case predicts

whether an entry should be evicted or not. One advantage of SLP compared to more advanced

machine learning techniques, such as multi-layer perceptrons or long short-term memory

networks, is that SLP has low time and space overhead, making it more suitable for online

learning. Furthermore, SLP are not prone to over�tting.

To predict if an entry will be evicted we use equation 4.1, where F3 , F2 and F1 represents the

weight for reuse-distance, reference count and the bias. The variables G3 and G2 represents the

metadata values from the entry reuse-distance and the reference count.

5?A4382C (G3 , G2) =
{

0, G3 · F3 + G2 · F2 + 1 · F1 < 0

1, G3 · F3 + G2 · F2 + 1 · F1 ≥ 0
(4.1)

Also, G3 must be scaled down so that it has the same order of magnitude as G2, as shown in

equation 4.2.

32

G3 =
current timestamp − timestamp of the last access

number of all entries in cache
(4.2)

In addition to learning the weights F3 , F2 and F1 , the equation 4.3 is used.

F3 ← F3 + ;A · G3 · (E4G?42C − E?A4382C)
F2 ← F2 + ;A · G2 · (E4G?42C − E?A4382C)
F1 ← F1 + ;A · G1 · (E4G?42C − E?A4382C)

(4.3)

The learning rate ;A controls how much the weights change during training. The variable

E?A4382C is the result of a prediction, equation 4.1, for an entry and E4G?42C is the correct answer

for this prediction, as we see in listing 4.5. Both E?A4382C and E4G?42C can either be 1 or 0. Thus,

the term (E4G?42C − E?A4382C) de�nes if the weights are updated or not.

Listing 4.5 shows the steps during the request for an entry and also shows when the prediction

and the learning take place.

1 �=?DC

2 Clk: Clock

3 hand: hand is the entry the clock hand is pointing to

4 entry: entry on I/O request

5 GhostQ: Ghost Queue

6

7 if Clk.contains(entry) == true Cℎ4=

8 updateMetadata(entry)

9 // trigger learning operation

10 // second parameter for learning () is E4G?42C
11 learning(entry , 1)

12 return entry

13 else

14 // cache miss

15 if Clk.isFull () == true Cℎ4=

16 // scan clean pages at the C-hand's location

17 C-candi = Clk.findCleanCandidate ()

18 // scan dirty pages at the D-hand's location

19 // in a sequential order (i.e, LBA)

20 D-Candi = Clk.findDirtyCandidate ()

21 victim = prediction(C-candi , D-candi)

22 // check if victim is in ghost queue

23 if GhostQ.findPage(victim) == true Cℎ4=

24 // ready to promote a entry to clock

25 // second parameter for learning () is E4G?42C
26 learning(entry , 1)

27 GhostQ.deleteEntry(victim)

28 else

33

29 if GhostQ.isFull () == true Cℎ4=

30 // evict a page on ghost queue with learning

31 // second parameter for learning () is E4G?42C
32 learning(GhostQ.tail , 0)

33 GhostQ.deleteEntry(GhostQ.tail)

34 4=3 8 5

35 GhostQ.insertEntry(victim)

36 4=3 8 5

37 Clk.evict(victim)

38 4=3 8 5

39 // insert entry to clock

40 Clk.insert(entry)

41 4=3 8 5

42 return entry

Listing 4.8: ML-CLOCK replacement algorithm in pseudocode, slightly modi�ed from

[Jiang et al., 2005]

On a cache hit, we update the metadata for the entry and start a learning operation. We set

E4G?42C to 1, because the requested entry is contained in the cache. Then we use the metadata

of the entry to make a prediction, equation 4.1, and get E?A4382C . The weights are updated or

not based on E4G?42C and E?A4382C . In addition, a cache hit may cause a clean entry to become a

dirty entry. Therefore, the entry is moved from the clean-clock to the dirty-clock. For this case,

we added the get_mut()-function to the Cache trait.

To �nd an entry for eviction during a cache miss, we search for eviction candidates in both

clocks. Like the hand in CLOCK, the c-hand and d-hand search for an entry with the reference

bit set to 0. So there are two eviction candidates, the c-candidate from the clean-clock and the

d-candidate from the dirty-clock. The next step is to apply the prediction operation to both

candidates and to decide which candidate to evict the preference rules in Table 4.1 will be used.

Since the goal is to minimize write operations, in 3 out of 4 possible cases the c-candidate is

removed and not the d-candidate.

Predicted Value Predicted Value Victim Entry

(c-candidate) (d-candidate)

0 0 C-Candidate

0 1 C-Candidate

1 0 D-Candidate

1 1 C-Candidate

Table 4.1.: Preference rules for victim entry [Cho and Kang, 2021]

When the entry to evict was found, it is checked whether this entry is already in the ghost

queue. If this is the case, a learning operation is triggered. Additionally, the entry is evicted

from the Ghost queue and added back to the cache. In our implementation, we do not reinsert

the entry into the cache for the same reason as in CLOCK-Pro, the DMU manages which entries

are inserted into the cache and not the cache itself.

In case the entry for eviction is not already in the ghost queue, it will be inserted into the ghost

queue. A learning operation is triggered if the ghost queue exceeds its capacity and thus a

34

ghost entry at the front leaves the ghost queue.

So there are three possibilities to trigger a learning operation during a cache hit, if the entry

for eviction is already in the ghost queue or if an entry must leave the ghost queue.

The case that the entry for eviction is pinned can be handled the same way as in CLOCK

and GCLOCK, simply leave the pinned entry in the clock and continue the search at the next

entry.

4.4. Summary

The basis for the data management in Haura is the DML state cycle. Each object can be in one

of the four states: on disk, unmodi�ed, modi�ed or in write back. Also the DML speci�es which

state changes are possible. In particular, the fact that objects cannot leave or enter the cache

when in modi�ed or write back state, the pinned entries, requires signi�cant adjustments to

the cache policy.

The implemented cache replacement policies followed the improvement strategies from the

Section 2.5. The �rst implemented policy was CLOCK, which was already implemented. CLOCK

is an LRU approximation which uses a circular linked list, instead of a priority queue as LRU

does. By using a circularly linked list, CLOCK achieves similar performance to LRU with lower

overhead.

The next policy was GCLOCK, which is a generalization of CLOCK, and uses a reference

counter instead of only a reference bit. Thus, GCLOCK can use more historical information for

the eviction decision.

The CLOCK-Pro replacement policy uses the Inter-Reference recency, a measure for the reuse

distance, to separate entries into hot (low reuse distance) and cold (high reuse distance) entries.

The hot entries have a high chance of being reused again in the near future and should therefore

stay in the cache. The cold entries which have a low chance of being reused again in the near

future should be evicted �rst.

The last implemented policy was ML-CLOCK, which uses a single-layer perceptron to learn

from the evicted entries and the cache hits whether an entry should be evicted or not. In

contrast to more advanced machine learning algorithms, a single-layer perceptron is easy to

implement, because no additional libraries are required. Also, the run time overhead for a

single-layer perceptron is low compared to other machine learning algorithms. Furthermore,

unlike the other cache replacement policies, ML-CLOCK attempts not only to minimize cache

misses, but also to minimize writes to the underlying storage medium. For this reason, ML-

CLOCK uses two circular linked lists, one for the clean (not modi�ed) and one for the dirty

(modi�ed) entries.

35

Chapter 5.

Evaluation

In this chapter, we evaluate the implemented cache replacement policies which we described in

Chapter 4. First, we will describe the used hardware and software for performance evaluation.

After that, we explain how the benchmarks for performance evaluation are constructed and

why we chose them. And lastly, we look at the results of the evaluation which we divided into

single threaded and multi threaded workloads.

5.1. Setup

The HPC cluster of the Faculty of computer science of the Otto-von-Guericke-University was

used for the evaluation. The Table 5.1 shows the hardware of the used node. As secondary

storage, we used the home folder, which is shared between all nodes and uses CephFS.

CPU AMD Epyc 7443

cores per CPU 24

base clock CPU 2.85

RAM 128 GB DDR4

Secondary storage shared CephFS across all nodes

Table 5.1.: Hardware used for evaluation.

5.2. Methodology

The performance of a cache strongly depends on the I/O access patterns. Cache replacement

policy should exploit this fact by choosing which entries will be evicted and which will remain

in the cache to avoid unnecessary cache misses. So in order to test our implemented cache

policies, we measure the cache hit rate for each cache replacement policy for di�erent random

I/O access patterns.

Fio is used to create synthetic random workloads for a �xed size of I/O. The following three

workloads for di�erent I/O sizes were selected. First, random 100% read I/O operations, second

random 90% read and 10% write I/O operations and third random 50% read and 50% write

operations. Furthermore, we benchmark for a single thread and multiple threads performing

I/O operations.

37

We have also considered workloads with more than 50% write operations. However, such

workloads that consist of more writes than reads are rather rare. Additionally, the many write

operations lead to a strong memory fragmentation, which either crashes the benchmark or

forces us to perform many synchronizations between �o and haura, resulting in a signi�cant

increase of the execution time. This caused that we omitted benchmarks with more than 50%

write operations.

The selected patterns for random I/O accesses are the following distributions. First, the zipf-

distribution (with \ = 1.1) which is a highly skewed long-tailed distribution. This means that

only a few objects are accessed frequently and most objects are accessed rarely. It is therefore a

cache-friendly workload. Such an access distribution is common, for example, with web caches

and databases.

Next, we have selected the normal distribution. The reason for this is that, compared to the

Zipf distribution, the I/O accesses are more evenly distributed and there is a pronounced peak,

but it is not as dominant as in the Zipf distribution. Therefore, more cache misses may occur

and the decision to evict is more relevant.

The third distribution is a zoned-distribution which is de�ned by how many accesses should

fall within a range of the �le. For our case, we de�ned that 60% of the accesses should be in

the �rst 10%, 30% of he accesses should be in the next 10%, 8% of the accesses should be in the

next 10% and 2% of the accesses should be in the last 10%. As with the normal distribution, the

accesses in the zoned distribution is more dispersed than the zipf distribution.

The last distribution is the uniform distribution. With uniform distribution, the accesses are

evenly distributed. This case is therefore the worst case for cache replacement policies, because

there is no reason to prefer to keep certain entries in the cache, since all entries are equally

likely. Hence, we use this case to evaluate performance under cache-unfriendly workloads.

Listing 5.1 shows an example of a �o job�le. The random distribution (lines 1-3), thread count

(line 7) and size of I/O (lines 12-13) vary depending on the benchmark. The �le size is twice

the actual size for I/O because, with the use of copy on write, we have fragmentation and if

we choose the �le size to low the benchmark run can crash. The same random seed is used

for each benchmark run (lines 5-6) and the block size for the I/O operations is 1MiB (line 9).

The fsync parameter (line 14) de�nes that after 131072 writes �o will synchronize the data, so

that all data that is currently copied for write will actually be written back. This is required to

reduce fragmentation.

In A.1, we show the con�guration �le for Haure. The cache size has been set at 1GiB, which is

relatively small to better represent the performance of the di�erent cache replacement policies.

If we set the cache capacity higher, the hit rate would be 100% in most cases, or we would have

to use very large I/O sizes to actually be able to detect di�erences.

38

1 [test01]

2 rw=randrw

3 rwmixread =90

4 random_distribution=zipf

5 randrepeat =1

6 randseed =937162211

7 numjobs =4

8 thread

9 bs=1m

10 direct =1

11 ioengine=external :/.../fio -engine -haura.o

12 size =16g

13 filesize =32g

14 fsync =131072

Listing 5.1: Example of a �o job�le used for evaluation.

39

5.3. Single threaded

5.3.1. Random read only Benchmark

The Figure 5.1 shows the benchmark for random read only workload for the di�erent random

distributions. For this case, the hit rate for CLOCK and GCLOCK is nearly identical and both

perform the best for all random distributions and �le sizes. CLOCK-Pro on the other hand, has

the lowest hit rate in all cases. One possible reason for the weaker performance of CLOCK-Pro

could be that we had to modify CLOCK-Pro for Haura. As described in 4.3.3, non-resident cold

entries are not turned into resident hot entries. Since the hot entries in particular are supposed

to prevent additional cache misses, this could have a negative e�ect on the performance in this

benchmark. We also notice that the hit rate of ML-CLOCK decreases slightly with increasing

�le size. This could mean that the accuracy of SLP in ML-CLOCK may decrease for certain

workloads.

(a) Zipf-distribution (b) Normal-distribution

(c) Zoned-distribution (d) Uniform-distribution

Figure 5.1.: These �gures show the hit-rate �le-size diagram for each implemented cache

replacement policy for random read-only workload with di�erent random distribu-

tions.

40

5.3.2. Random 90% read and 10% write Benchmark

The next benchmark is for random 90% read and 10% write operations and is shown in Figure 5.2.

In contrast to the read-only case, we have a signi�cantly di�erent result. Partly, this is because

with increased write operations more entries are copied for the write and thus are in the

modi�ed state and pinned which leads to the decreasing hit rate for larger �le sizes.

Also, we con�gured �o to perform synchronization operations after 131072 I/O operations

and during this synchronization, all cache entries are deleted. This is necessary because we

have already seen in the DML cycle that all objects that are in the status modi�ed or write

back are in the cache. So the changes are applied to the data in the cache, not to the actual

data on disk. To update all data on disk, each cache entry is dropped and if the cache entry

was in modi�ed or write back state, the changes are applied to the original data on disk. To

ensure data consistency. Therefore, the cache must be re�lled after each synchronization and

each newly inserted entry does not count as a cache miss. This leads to a hit rate of 100% for

small �le sizes. With increasing �le size, ML-CLOCK outperforms the other cache replacement

policies for all random distributions. It can be assumed that ML-CLOCK has no problems

with adapting to the underlying access distribution for this mixed workload even for di�erent

random distributions. The performances of CLOCK, GCLOCK and CLOCK-Pro are almost

equal across all distributions and �le sizes.

(a) Zipf-distribution (b) Normal-distribution

(c) Zoned-distribution (d) Uniform-distribution

Figure 5.2.: These �gures show the hit-rate �le-size diagram for each implemented cache

replacement policy for random 90% read 10% write workload with di�erent random

distributions.

41

5.3.3. Random 50% read and 50% write Benchmark

The last single threaded benchmark is for random 50% read and 50% write operations, as shown

in Figure 5.3. The �rst thing to notice is that for all cache replacement policies the hit rates

are lower than in the previous benchmark. This is a consequence of synchronization, which

occurs more frequently with an increased proportion of write operations, since the cache is

�ushed with each synchronization. The cache must therefore be rebuilt, which leads to more

cache misses. Apart from the generally reduced hit rate, the results are similar to the previous

benchmark. ML-CLOCK outperforms the other cache replacement strategies and CLOCK,

GCLOCK and CLOCK-Pro again show almost equal performance.

(a) Zipf-distribution (b) Normal-distribution

(c) Zoned-distribution (d) Uniform-distribution

Figure 5.3.: These �gures show the hit-rate �le-size diagram for each implemented cache

replacement policy for random 50% read 50% write workload with di�erent random

distributions.

42

5.4. Multi threaded

5.4.1. Random read only Benchmark

Figure 5.4 to Figure 5.7 show the results for the read only benchmark for the di�erent random

distributions at various thread counts. The results have some commonalities with the single-

threaded read-only benchmark. As in the single threaded case, CLOCK and GCLOCK have

a nearly equal hit rate and outperform the other two cache policies. Also, CLOCK-Pro has

the worst performance across all distributions, �le sizes and thread counts. This can likely be

explained by the same reason as for the single threaded benchmark. The change we had to

make to CLOCK-Pro so that we could implement it in Haura.

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.4.: Zipf-distribution, read only workload

43

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.5.: Normal-distribution, read only workload

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.6.: Zoned-distribution, read only workload

44

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.7.: Uniform-distribution, read only workload

5.4.2. Random 90% read and 10% write Benchmark

For the random 90% read and 10% write Benchmark the results, Figure 5.8 to Figure 5.11, are

not as clear as in the read only benchmark. There is no policy that clearly outperforms the

other policies.

ML-CLOCK has a good performance for low thread counts and for zipf- and normal-distribution.

But for 16 threads and uniform distribution, ML-CLOCK shows signi�cantly worse performance

than the other policies. CLOCK-Pro, which was outperformed in the single-thread benchmarks,

performed best in some cases, speci�cally Figure 5.10d for 4 threads. Which suggests that

the fact that CLOCK-Pro cannot convert non-resident cold entries into resident hot entries,

the change we had to make to our CLOCK-Pro implementation, does not signi�cantly a�ect

the performance here. Also, CLOCK and GCLOCK, which had previously shown similar

performance, now di�er in normal- and zoned-distribution benchmark.

45

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.8.: Zipf-distribution, random 90% read 10% write only workload

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.9.: Normal-distribution, random 90% read 10% write only workload

46

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.10.: Zoned-distribution, random 90% read 10% write only workload

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.11.: Uniform-distribution, random 90% read 10% write only workload

47

5.4.3. Random 50% read and 50% write Benchmark

The last benchmark is for random 50% read and 50% write operations, Figure 5.12 to Figure 5.15.

Here the increased number of write operations again leads to lower hit rates, as in the corre-

sponding single threaded benchmark. CLOCK-Pro again shows better performance for this

workload compared to single threaded or the multi threaded read only benchmark. This further

supports the theory that in mixed multi threaded workloads our change to CLOCK-Pro is

not signi�cant. In particular, CLOCK-Pro performs best at 64 GB and 128 GB �le sizes and

8 to 16 threads. ML-CLOCK, on the other hand, has shown a mixed performance. With zipf

distribution and low thread count, the performance is good. However, with a higher thread

count and �le sizes, the performance of ML-CLOCK is usually worse than that of the other

cache replacement strategies. A possible explanation for this could be that ML-CLOCK has

di�culty learning the underlying access pattern for a higher number of threads and therefore

performs worse than the other cache replacement policies in such workloads. Furthermore,

the performance of CLOCK and GCLOCK, with the exception of uniform distribution, is more

distinct from each other.

What also stands out for this speci�c benchmark, with equal ratio of read and write operation

Figure 5.15, is that for the uniform random distribution, the hit rate increases with a larger

thread count. This is unexpected, since for all other benchmarks the uniform distribution

hit rate for all cache replacement polices remains about the same regardless of thread count

and �le size, with the exception of ML-CLOCK for high thread count. This suggests that the

combination of increased thread count and the proportion of write operations improves the hit

rate for random uniform distribution.

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.12.: Zipf-distribution, random 50% read 50% write only workload

48

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.13.: Normal-distribution, random 50% read 50% write only workload

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.14.: Zoned-distribution, random 50% read 50% write only workload

49

(a) 16 GiB �le size (b) 32 GiB �le size

(c) 64 GiB �le size (d) 128 GiB �le size

Figure 5.15.: Uniform-distribution, random 50% read 50% write only workload

5.5. Summary

We have considered 3 workloads for the performance evaluation, random reads only and two

mixed workloads with di�erent ratios of random reads to random writes for di�erent I/O

sizes and measured the hit rate. Four di�erent random distributions were used to simulate

di�erent I/O behavior. First, the zipf-distribution as a cache friendly workload that often occurs

in web caches and databases. Then the normal- and zoned-distribution, which have a larger

dispersion than the zipf-distribution. And last, we used the uniform distribution, which is a

cache unfriendly workload since each entry has the same access probability. Furthermore, we

evaluated these cases for di�erent thread counts performing I/O.

In the single threaded benchmarks, ML-CLOCK outperforms the other policies for mixed

read write workloads. However, CLOCK and GCLOCK performed the best for the read-only

workload. CLOCK-Pro, on the contrary, performed worse in the read only workloads but

showed comparable performance to CLOCK and GCLOCK in the mixed workloads.

The results of the multi-thread benchmarks are not as clear as those of the single-thread

benchmarks. In read only workloads, CLOCK and GCLOCK perform best and CLOCK performs

worst, as in the single threaded benchmark. For the mixed workloads, there is no cache

replacement policy that outperforms the other. CLOCK-Pro, for example, has good performance

at high thread counts and �le sizes, but in a few cases has signi�cantly under performance at

lower thread counts. Also, the performance of CLOCK and GCLOCK, which was almost the

50

same in the single-thread and multi-thread read-only benchmark, shows signi�cant di�erences

in the mixed multi-thread benchmark.

ML-CLOCK, which showed the best performance for mixed single threaded benchmarks, has

signi�cantly lower performance for high thread counts and �le sizes. Which could indicate

that ML-CLOCK has problems with recognize the I/O access pattern for higher thread counts

and �le sizes. Another possible cause could be how the ghost queue is managed. Whether a

learning operation is triggered depends on if the ghost queue has already reached maximum

size and therefore entries have to be removed when a cache entry is evicted from the cache

which is then used for learning. The maximum size of the ghost queue depends on how many

cache entries are in the cache. So, if a synchronization is performed and the cache is cleared,

no entries are removed from the ghost queue for the time being. Only after the cache is re�lled

and an eviction is performed, thus adding an entry to the ghost queue, the size of the ghost

queue is checked. Since the ghost queue is �lled by the entries before the synchronization, a

large number of learning operations is triggered at once until the size of the ghost queue is

again smaller or equal to the size of the cache. This is not a problem for the single threaded

benchmark, since there is also only one random distribution for the one thread. But for the

multi threaded benchmarks, each thread has its own �le to which the random distribution

is applied, so the access pattern is more complex. With the triggering of a batch of learning

operations at the same time, the SLP may tend to over�tting which is disadvantageous when

the access patterns are more complex, as in the case of multi-threaded benchmarks.

The weaker performance of CLOCK-Pro in the read-only benchmarks, both single and multi-

threaded, can likely be attributed to our changes to CLOCK-Pro for Haura. The change was

that non-resident cold entries cannot be converted to resident hot entries. This change is likely

to be more noticeable in read only workloads, as in this case, there is no synchronization which

clears the cache. Thus, the cache exists longer and there are more cases where a non-resident

cold entry should be converted into a hot entry.

As a result, it can be said that for all implemented cache replacement policies and single threaded

use cases ML-CLOCK should be used. CLOCK and GCLOCK have better performance for read

only workloads but read only workloads are rather the exception for real applications.

For multi-threaded use cases, it is more di�cult to make a recommendation, as the performance

of the implemented policies was also mixed and there is no clearly better policy. One possibility

could be to use ML-CLOCK for small thread count, about 4 threads, but switch to CLOCK-Pro

for higher thread count. Another possibility would be to use CLOCK-Pro for all multi threaded

application. However, neither of these options is optimal and may produce suboptimal results

for some applications.

51

Chapter 6.

Conclusion

For this thesis, we implemented and evaluated cache replacement policies for a copy-on-write

optimized hierarchical storage stack. We used Haura as the storage stack because Haura is

designed as a research storage stack and combines all relevant sub modules from command

line interface and data management to benchmark tools in a single code base.

We examined what cache replacement methods are and looked at four early developed and

commonly used policies, which were Bélády’s algorithm, FIFO, LRU and LFU. Although these

cache replacement strategies are still commonly used, they all have some shortcomings and

workloads where they under perform. Therefore, we have considered strategies to develop

improved cache replacement policies.

We followed these strategies when selecting the cache replacement policies we implemented

and evaluated. The CLOCK policy was already implemented and is a variant of LRU. The �rst

policy we implemented, GCLOCK, is a generalization of CLOCK that uses a reference counter

instead of a reference bit and follows the strategy of using more historical information. For

our second implemented policy, we chose CLOCK-Pro, which follows the strategy of detecting

and adapting to access patterns. This is accomplished by dividing the cache entries into hot

and cold entries based on their Inter-Reference recency, which are treated di�erently. The last

policy implemented was ML-CLOCK, which uses a single-layer perceptron, a machine learning

technique, to learn and adapt to the access pattern.

We also looked at the changes we had to make to Haura to implement the policies. In particular,

the circumstance that the DMU plays a central role in the management of the cache meant that

the implemented policies had to be modi�ed to ensure the correct functionality of Haura.

To evaluate the di�erent cache policies, we created several benchmarks ranging from random

read only workloads to mixed random read write workloads for single and multi-threading.

For the random distribution, we used zipf, normal, zoned and uniform distribution to simulate

di�erent workload behavior.

In read-only benchmarks, both single andmulti-threaded, CLOCK and GCLOCK performed best,

and in mixed single-threaded benchmarks, ML-CLOCK outperformed the other strategies. The

results are not as clear in the mixed multi-thread benchmarks. CLOCK-Pro, which showed the

worst performance in the single-thread benchmarks, shows a signi�cantly better performance

in these benchmarks. On the other hand, ML-CLOCK, which had the best mixed single

threaded performance, shows signi�cantly worse performance compared to the other strategies,

especially in benchmarks with a high thread count and �le size.

Furthermore, we have observed that for both single and multi-threaded, the cache hit rate

decreases signi�cantly with a larger percentage of write operations. This can be explained by

53

the fact that with an increased number of writes there are also more pinned entries that cannot

be removed from the cache.

Based on our measurements, we can say that ML-CLOCK should be used for single threaded

use cases. Since it has achieved the best results for all single threaded benchmarks for mixed

workloads. In the single threaded read only workloads, CLOCK and GCLOCK performed better,

but read only workloads are uncommon for real applications.

It is more di�cult to make a recommendation for use cases with multiple threads, since the

performance of the implemented strategies was inconsistent and there is no clearly better

strategy. An option would be to use ML-CLOCK for a low number of threads and switch

to CLOCK-Pro for higher thread counts. A di�erent option would be to use CLOCK-Pro for

all multi threaded applications. Nevertheless, both options are not optimal and may lead to

suboptimal results for some applications.

6.1. Future Work

This work provides several possibilities for future work. First, the evaluation should be extended

to traces of real workloads and not just synthetic benchmarks. Since synthetic benchmarks

are only of limited use for predicting performance for application with a non static accesses

distribution or very speci�c access patterns.

Second, we saw that ML-CLOCKwas also intended to reduce write operations to the underlying

storage medium. For our test system which uses CephFS we could not test if this is actually the

case and ML-CLOCK reduces write operations compared to the other implemented policies.

Third, there are various other cache replacement policies that are promising to achieve better

performance. In Chapter 2 and Chapter 3 we have presented some further cache replacement

policies that can be considered. in particular [Yang et al., 2023] should be implementable with

little e�ort. Since all the implemented cache replacement policies are clock-based and therefore

already use some form of Lazy promotion and only Quick Demotion needs to be implemented.

Fourth, the multi threaded workloads in particular cause problems, so this area should be

further investigated. One approach could be, instead of using one cache for all threads, to split

the cache and give each thread his own cache. This might allow to leverage ML-CLOCK’s good

performance for single threaded workloads for multi threaded workloads as well.

Fifth, since we have seen that the change we have made to CLOCK-Pro and ML-CLOCK is

causing problems and possible performance degradation, the policies and DMU should be

modi�ed to correct this.

54

Bibliography

[Akbari Bengar et al., 2020] Akbari Bengar, D., Ebrahimnejad, A., Motameni, H., and Gol-

sorkhtabaramiri, M. (2020). A page replacement algorithm based on a fuzzy approach to

improve cache memory performance. Soft Computing, 24(2):955–963. (Cited on page 14)

[Belady, 1966] Belady, L. A. (1966). A study of replacement algorithms for a virtual-storage

computer. IBM Systems journal, 5(2):78–101. (Cited on page 9)

[Belady et al., 1969] Belady, L. A., Nelson, R. A., and Shedler, G. S. (1969). An anomaly in

space-time characteristics of certain programs running in a paging machine. Commun. ACM,

12(6):349–353. (Cited on page 9)

[Bender et al., 2015] Bender, M. A., Farach-Colton, M., Jannen, W., Johnson, R., Kuszmaul, B. C.,

Porter, D. E., Yuan, J., and Zhan, Y. (2015). An introduction to b-trees and write-optimization.

login; magazine, 40(5). (Cited on pages 5 and 6)

[Brodal and Fagerberg, 2003] Brodal, G. S. and Fagerberg, R. (2003). Lower bounds for external

memory dictionaries. In SODA, volume 3, pages 546–554. (Cited on page 5)

[Cao et al., 1994] Cao, P., Felten, E. W., and Li, K. (1994). Application-controlled �le caching

policies. In USENIX Summer, pages 171–182. (Cited on page 11)

[Cho and Kang, 2021] Cho, M. and Kang, D. (2021). ML-CLOCK: E�cient page cache algorithm

based on perceptron-based neural network. Electronics, 10(20):2503. (Cited on pages 32

and 34)

[Choi and Park, 2022] Choi, H. and Park, S. (2022). Learning future reference patterns for

e�cient cache replacement decisions. IEEE Access, 10:25922–25934. (Cited on page 14)

[Corbato et al., 1968] Corbato, F. J. et al. (1968). A paging experiment with the multics system.

(Cited on pages 24, 27, and 28)

[Danlash, 2022] Danlash (2022). SVG Graphic illustrating Memory hierarchy.

https://commons.wikimedia.org/w/index.php?title=File:ComputerMemoryHierarchy.

svg&oldid=686137092. License: public domain. [Online; accessed 16-October-2023].

(Cited on page 3)

[Denning, 1980] Denning, P. J. (1980). Working sets past and present. IEEE Transactions on

Software engineering, (1):64–84. (Cited on page 9)

[Efnusheva et al., 2017] Efnusheva, D., Cholakoska, A., and Tentov, A. (2017). A survey of

di�erent approaches for overcoming the processor - memory bottleneck. International

Journal of Information Technology and Computer Science, 9:151. (Cited on pages 1 and 2)

[Einziger et al., 2017] Einziger, G., Friedman, R., and Manes, B. (2017). Tinylfu: A

highly e�cient cache admission policy. ACM Transactions on Storage (ToS), 13(4):1–31.

(Cited on pages 10, 18, and 19)

55

https://commons.wikimedia.org/w/index.php?title=File:ComputerMemoryHierarchy.svg&oldid=686137092
https://commons.wikimedia.org/w/index.php?title=File:ComputerMemoryHierarchy.svg&oldid=686137092

[Eytan et al., 2020] Eytan, O., Harnik, D., Ofer, E., Friedman, R., and Kat, R. (2020). It’s time to

revisit LRU vs. FIFO. In 12th USENIX Workshop on Hot Topics in Storage and File Systems

(HotStorage 20). (Cited on pages 17 and 19)

[Ha and Kim, 2022] Ha, M. and Kim, S.-H. (2022). Ccow: Optimizing copy-on-write considering

the spatial locality in workloads. Electronics, 11(3):461. (Cited on page 5)

[Höppner, 2021] Höppner, T. (2021). Design and implementation of an object store with tiered

storage. Cited on, page 15. (Cited on page 7)

[Jiang et al., 2005] Jiang, S., Chen, F., and Zhang, X. (2005). CLOCK-Pro: An e�ective improve-

ment of the CLOCK replacement. In USENIX Annual Technical Conference, General Track,

pages 323–336. (Cited on pages 28 and 34)

[Jiang and Zhang, 2002] Jiang, S. and Zhang, X. (2002). Lirs: An e�cient low inter-reference

recency set replacement policy to improve bu�er cache performance. SIGMETRICS Perform.

Eval. Rev., 30(1):31–42. (Cited on pages 11, 12, 13, and 28)

[Karakostas and Serpanos, 2000] Karakostas, G. and Serpanos, D. (2000). Practical LFU imple-

mentation for web caching. Technical Report TR-622-00. (Cited on page 10)

[Kuhn, 2017] Kuhn, M. (2017). Julea: A �exible storage framework for hpc. InHigh Performance

Computing: ISC High Performance 2017 International Workshops, DRBSD, ExaComm, HCPM,

HPC-IODC, IWOPH, IXPUG, Pˆ 3MA, VHPC, Visualization at Scale, WOPSSS, Frankfurt, Ger-

many, June 18-22, 2017, Revised Selected Papers 32, pages 712–723. Springer. (Cited on page 7)

[Kumar and Singh, 2016] Kumar, S. and Singh, P. K. (2016). An overview of modern cache

memory and performance analysis of replacement policies. In 2016 IEEE International

Conference on Engineering and Technology (ICETECH), pages 210–214. (Cited on page 4)

[Lee et al., 2001] Lee, D., Choi, J., Kim, J.-H., Noh, S. H., Min, S. L., Cho, Y., and Kim, C. S. (2001).

LRFU: A spectrum of policies that subsumes the least recently used and least frequently

used policies. IEEE transactions on Computers, 50(12):1352–1361. (Cited on pages 12 and 32)

[Lugar, 2001] Lugar, J. (2001). Hierarchical storage management: leveraging new capabilities.

IT Professional, 3(2):53–55. (Cited on page 3)

[Mahanti et al., 2000] Mahanti, A., Williamson, C., and Eager, D. (2000). Tra�c analysis of a

web proxy caching hierarchy. IEEE Network, 14(3):16–23. (Cited on page 11)

[Megiddo and Modha, 2003] Megiddo, N. and Modha, D. S. (2003). ARC: A Self-Tuning, low

overhead replacement cache. In 2nd USENIX Conference on File and Storage Technologies

(FAST 03), San Francisco, CA. USENIX Association. (Cited on page 13)

[Megiddo and Modha, 2004] Megiddo, N. and Modha, D. S. (2004). Outperforming lru with an

adaptive replacement cache algorithm. Computer, 37(4):58–65. (Cited on page 13)

[O’neil et al., 1993] O’neil, E. J., O’neil, P. E., and Weikum, G. (1993). The LRU-K page

replacement algorithm for database disk bu�ering. Acm Sigmod Record, 22(2):297–306.

(Cited on page 11)

[Patterson et al., 1995] Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D., and Zelenka,

J. (1995). Informed prefetching and caching. In Proceedings of the �fteenth ACM symposium

on Operating systems principles, pages 79–95. (Cited on page 11)

56

[Peterson, 2002] Peterson, Z. N. J. (2002). Data placement for copy-on-write using virtual

contiguity. (Cited on page 5)

[Qiu et al., 2023] Qiu, Z., Yang, J., Zhang, J., Li, C., Ma, X., Chen, Q., Yang, M., and Xu, Y. (2023).

FrozenHot cache: Rethinking cache management for modern hardware. In Proceedings of

the Eighteenth European Conference on Computer Systems, pages 557–573. (Cited on pages 18

and 19)

[Rodriguez et al., 2021] Rodriguez, L. V., Yusuf, F., Lyons, S., Paz, E., Rangaswami, R., Liu, J.,

Zhao, M., and Narasimhan, G. (2021). Learning cache replacement with {CACHEUS}.
In 19th USENIX Conference on File and Storage Technologies (FAST 21), pages 341–354.

(Cited on page 11)

[Shasha and Johnson, 1994] Shasha, D. and Johnson, T. (1994). 2q: A low overhead high

performance bu�er management replacement algoritm. In Proc. 20th Int. Conf. Very Large

Databases, pages 439–450. (Cited on page 12)

[Smith, 1978] Smith, A. J. (1978). Sequentiality and prefetching in database systems. ACM

Transactions on Database Systems (TODS), 3(3):223–247. (Cited on page 27)

[Van Den Berg and Gandol�, 1992] Van Den Berg, J. and Gandol�, A. (1992). LRU is better than

FIFO under the independent reference model. Journal of applied probability, 29(1):239–243.

(Cited on pages 9, 10, and 17)

[Wiedemann, 2018] Wiedemann, F. (2018). Modern storage stack with key-value store interface

and snapshots based on copy-on-write b Y-trees. (Cited on pages 7, 8, and 22)

[Wulf and McKee, 1995] Wulf, W. A. andMcKee, S. A. (1995). Hitting thememorywall: Implica-

tions of the obvious. ACM SIGARCH computer architecture news, 23(1):20–24. (Cited on page 1)

[Wünsche, 2022] Wünsche, J. (2022). Data migration policies in a copy-on-write tiered storage

stack-conception and implementation. (Cited on page 7)

[Wünsche, 2022] Wünsche, J. (2022). Documentation Haura. https://github.com/julea-

io/haura/tree/main/docs. [Online; accessed 16-October-2023]. (Cited on page 7)

[Yang et al., 2023] Yang, J., Qiu, Z., Zhang, Y., Yue, Y., and Rashmi, K. (2023). FIFO can be better

than LRU: the power of lazy promotion and quick demotion. In Proceedings of the 19th

Workshop on Hot Topics in Operating Systems, pages 70–79. (Cited on pages 17, 19, and 54)

57

https://github.com/julea-io/haura/tree/main/docs
https://github.com/julea-io/haura/tree/main/docs

Appendix A.

Appendix

1 {

2 "storage": {

3 "tiers": [

4 {

5 "top_level_vdevs": [

6 {

7 "path": "/home/cgrueneb /. cache/haura/cache.disk",

8 "direct": true

9 }

10],

11 "preferred_access_type": "Unknown"

12 }

13],

14 "queue_depth_factor": 20,

15 "thread_pool_size": null ,

16 "thread_pool_pinned": false

17 },

18 "alloc_strategy": [

19 [

20 0

21],

22 [

23 1

24],

25 [

26 2

27],

28 [

29 3

30]

31],

32 "default_storage_class": 0,

33 "compression": "None",

34 "cache_size": 1073741824 ,

35 "access_mode": "OpenOrCreate",

36 "sync_interval_ms": null ,

37 "migration_policy": null ,

59

38 "metrics": null

39 }

40

Listing A.1: Haura con�guration �le used for benchmark runs.

60

Statement of Authorship

I herewith assure that I wrote the present thesis independently, that the thesis has not been

partially or fully submitted as graded academic work and that I have used no other means than

the ones indicated. I have indicated all parts of the work in which sources are used according

to their wording or to their meaning.

I am aware of the fact that violations of copyright can lead to injunctive relief and claims for

damages of the author as well as a penalty by the law enforcement agency.

Magdeburg, October 26, 2023

Signature

61

	Introduction
	Memory Hierarchy
	Caching
	Hierarchical Storage Management
	Summary
	Contribution
	Outline

	Background
	Copy on Write
	B-tree
	Haura
	Cache Replacement Policies
	Optimal Cache Replacement Policy
	FIFO
	Least Recently Used
	Least Frequently Used

	Improved Cache Replacement Policies
	Explicit User Level Hints
	Utilizing Deeper History Information
	Detection and Adaption of Access Patterns
	Using Machine Learning

	Summary

	Related Work
	Design and Implementation
	DML State Cycle
	Cache Trait
	Implemented Cache Replacement Policies
	CLOCK
	GCLOCK
	CLOCK-Pro
	ML-CLOCK

	Summary

	Evaluation
	Setup
	Methodology
	Single threaded
	Random read only Benchmark
	Random 90% read and 10% write Benchmark
	Random 50% read and 50% write Benchmark

	Multi threaded
	Random read only Benchmark
	Random 90% read and 10% write Benchmark
	Random 50% read and 50% write Benchmark

	Summary

	Conclusion
	Future Work

	Bibliography
	Appendix

