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Abstract

The importance of climate data is spread across different sectors like weather forecasting,
agriculture, water resource management etc. Moreover, climate data collected over the years
helps to analyse the change in climate patterns and provides crucial information about the
future climate. However, collecting such data sets up a massive challenge for the limited
storage facilities. Compressing data is one of the solutions to the storage problem, which
reduces the size of data by removing redundant information. This work aims to understand
the challenges behind different Autoencoder architectures achieving a high compression ratio
while maintaining the originality of data when reconstructing the climate data. The employed
climate dataset is from the open-source Weatherbench dataset containing 14 climate variables.
Evaluation metrics like compression ratio, Structural Similarity Metrics and Peak Signal to
Noise Ratio are used to measure and select the best performing architecture on the climate
variables. The Autoencoders show good reconstruction results for the variables geopotential,
potential vorticity, vorticity, toa incident solar radiation, temperature and 2m temperature and
relative humidity, 10m u component of wind, 10m v component of wind, u component of wind
and v component of wind but worse on variable total cloud cover. Variational Autoencoders
achieve the highest compression ratio of 43.29:1 and better reconstruction quality compared to
other Autoencoder architectures. Variational Autoencoder compresses 14 times more than that
of other lossless techniques like SZ, ZFP and PCA. The compression and decompression speed
of lossless compression techniques like Zstd, Zlib, and Lz4 turns out to be 10-17 times faster
than the Variational Autoencoder.
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Chapter 1.

Introduction

This chapter gives an in-detail discussion of the basic introduction about the abundance availability
of data and its storage problems. Later on, we dive into the motivation behind solving the storage
problem of climate data using the Machine Learning approach. We conclude this chapter by
discussing the methods implemented to compress climate data and the goal of this thesis in
detail.

In today’s world, as the technologies get advanced, the data generated by them is also growing
at a rapid pace, according to [Rydning et al., 2018] it is estimated that the volume of data
is expected to reach around 175ZB (Zettabytes) by 2025. The amount of data produced at
this enormous pace can most likely cause storage problems which in turn takes a toll on the
resources like infrastructure, cost, security etc. In order to handle these large volumes of data,
there are well-established techniques, one of such techniques is Compression. As the name
suggests, Compression is a technique that reduces the number of bits needed to represent the
information one wants to store by identifying patterns in the data [Sayood, 1996].

1.1. Motivation

Among the vast amount of data available, climate data is one of the important classes of
datasets. These datasets are particularly large in size because of the different resolutions at
which the earth system is modelled with precision. Moreover, the climate data consists of
different parameters such as precipitation, temperature, humidity, etc. That helps specify the
earth’s climatic condition at different heights. When the data is aggregated over the years
and years, it can be used to study the patterns in climate change over the years, which in
turn can be detrimental in providing crucial clues about the future of our planet. Climate
data being enormous in size in itself, when accumulated over the years at some point it might
cause aforementioned storage problems. To overcome the storage problems there have been
two compression techniques used, mainly known as lossless and lossy compression techniques.
However, in the lossy compression techniques determining the extent to which climate data
can be compressed with minimal loss of data is still an ongoing research problem.

In recent years, Deep Learning methods have encountered a tremendous increase in both use
and effectiveness. Due to their seemingly high potential in approximating any measurable
function [Hornik et al., 1989], these methods have infiltrated many application areas, including
data compression. Autoencoder is one of the Deep Learning methods that could be utilized
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to compress and predict different climate parameters. Climate data compression using Au-
toencoders would enable to achieve a higher compression ratio with minimal loss of original
information.

1.2. Aim

The goal of this thesis is to compress the climate data using Autoencoder-based methods and
understand extensively how these Autoencoders perform individually on different climate
variables for the task of lossy compression. In addition, further subgoals were defined to explore
the underlying challenges and limitations of simple Autoencoder architectures in compressing
climatic data to attain a high compression ratio while losing less information during the process
of compression and reconstruction. The challenges and limitations of simple Autoencoder
paved the way to implement generative approaches like Variational Autoencoders and compare
the compression ratio and reconstruction loss of the approaches.

Finally, comparing the performance of Autoencoder and Variational Autoencoder approaches
with the state of the art lossy compression techniques like SZ, ZFP and PCA and lossless
techniques like zstd, zlib and lz4. Our approach aims to outperform the traditional approaches
in attaining a high compression ratio.

Summary

The introduction of this chapter starts by describing the motivation behind this thesis and
the objectives set to achieve the motive of compression. Further, the chapters in this thesis
are structured as follows: Chapter 2 begins with the discussion on the fundamentals of data
compression along with a detailed description of the Machine Learning, Neural Networks, Au-
toencoder and Variational Autoencoders, and the chapter concludes with the matrics employed.
Chapter 3 goes through the data preprocessing of the weather bench dataset as well as the
implementation of the different Autoencoder architectures. Chapter 4 presents the related work
regarding climate data compression using Autoencoders. Chapter 5 compares the compression
ratio and information loss of the implemented Autoencoders to the state of the art compression
techniques and a brief discussion on the goals achieved. Finally, Chapter 6 summarises the
findings and suggestions for potential future work.
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Chapter 2.

Background

This chapter provides a quick overview of data compression fundamentals, several types of compres-
sion algorithms, and a complete description of Machine Learning, Artificial Neural Networks, and
the compression metrics employed in this work. This chapter offers a fundamental understanding
of the aforementioned topics to the reader. This chapter starts by describing data compression and
its classification and also offers a quick overview of the state of the art compression algorithms
that will be employed in this work. Further, we also cover the fundamentals of Machine Learning
and Artificial Neural Networks. Due to its relevance to this topic, the primary emphasis is on
Convolutional Neural Networks (CNNs) and the functioning of Autoencoders and Variational
Autoencoders. Finally, we conclude this chapter by outlining the various evaluation metrics used
in this work to measure the quality of compression algorithms.

2.1. Data Compression

Data compression is the process of representing the data in a compact form while retaining its
originality. This process involves encoding, altering, or restructuring the data to reduce its size.
A data compression algorithm consists of two blocks, the compressor and the decompressor/re-
constructor. The compressor block takes 𝑥 as input and generates a reduced size representation
𝑥𝑐, and the decompressor then reconstructs the input 𝑦 from 𝑥𝑐, which is the same or almost
similar to the input 𝑥 [Sayood, 1996]

In accordance with the necessity of reconstruction, data compression algorithms can be catego-
rized into lossless and lossy compression algorithms [Sayood, 1996]

2.1.1. Lossless Compression

As the name indicates, lossless compression results in no loss of data. In other words, when
the data is losslessly compressed, the original data can be reconstructed from the compressed
data. Lossless compression is used in applications where the disparity between original and
reconstructed data is unacceptable, e.g., text compression, database compression, bank records
compression, etc., where a minor discrepancy in data compression or reconstruction can result
in erroneous addition or deletion of information, altering the original context of the data. This
work emphasises three lossless compression techniques employed, i.e. Zstd, Zlib and Lz4.
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Zlib

Zlib [Gailly and Adler, 1995] is an open-source software library that uses DEFLATE algorithm
for lossless data compression. DEFLATE is a combination of LZ77 [Lempel and Ziv, 1976]
replaces a repeating sequence of symbols with a pointer referring to its first sequence along
with an integer representing the sequence’s length, and Huffman coding [Huffman, 1952]
encodes the symbols with the binary codes. Zlib performs well on a wide range of data while
consuming little system resources [Gailly and Adler, 1995].

Zstd

Zstandard, commonly known as Zstd, is developed by [Collet and Kucherawy, 2018] at Face-
book. Zstd is an open-source compression library designed using LZ77 [Lempel and Ziv, 1976]
with an extensive search window and using both the Asymmetric numeral system(ANS)
[Duda, 2013] of entropy encoding, and Huffman coding [Huffman, 1952]. Zstd has tunable
compression levels ranging from negative 7 to 22. Level selection establishes a trade-off be-
tween the compression speed and compression ratio, where level negative 7 is the fastest in
compressing by compromising the compression ratio, and level 22 has the slowest compression
speed but the best compression ratio. As a result, the decompression of data is relatively fast.

Lz4

LZ4 [Collet, 1995] is an open-source lossless compression algorithm that prioritizes speed in
both compression and decompression. It exclusively employs the LZ77 [Lempel and Ziv, 1976]
compression algorithm, which encodes data as a series of sequences.

2.1.2. Lossy Compression

As the name implies, lossy compression methods involve the loss of information where the
reconstructed or decompressed data appears to be non-identical to the original data. As
discussed in Section 2.1.1, loss of information can cause a complete change in the context of
data during text compression. However, in some cases, retaining important data patterns while
eliminating extraneous information to minimise data size is acceptable. Finding and preserving
the critical information in data is an essential task while implementing a lossy compressor.
There are many domains where lossy compression is applicable, e.g. image compression, video
compression, audio compression etc. Among the existing lossy compressors, ZFp and SZ are
considered to be the two best error-bound lossy compression techniques [Lu et al., 2018], that
are discussed below.

ZFP

Zfp is a lossy approach for compressing integer, and floating-point data stored in multidimen-
sional arrays [Lindstrom, 2014]. The main idea behind this is breaking the multidimensional
array into independent blocks and compressing/decompressing each block independently. Zfp
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compresses data lossily to achieve high compression and allows users to modify the error
bounds to achieve different compression ratios [Lindstrom, 2014].

SZ

SZ [Di and Cappello, 2016] is a lossy compression technique that approximates original data
using multiple curve-fitting models. There are three main steps involved in SZ compression:
array linearization, curve fitting and unpredictable data compression. First, SZ linearizes a
multi-dimensional array to a 1-D sequence using the memory sequence of the original data
to save memory overhead. Secondly, it employs three prediction models: constant, linear and
quadratic and the model that provides the best fit on the data is then translated into integer
quantization factors and encoded using the Huffman tree. Finally, if the data does not fulfil
the error bound, SZ classifies it as unpredictable and encodes it using binary representation
analysis.

2.2. Machine Learning Basics

Machine Learning (ML) is the scientific study and application of statistical models and algo-
rithms that enable computer systems to perform tasks without explicitly being programmed.
In this context, learning has been described as follows [Mitchell, 1997] “A computer program is
said to learn from experience E with respect to some class of tasks T and performance measure
P if its performance at tasks in T, as measured by P, improves with experience E.” This is usually
achieved through an iterative training procedure.

Generally, ML categorizes into three different learning paradigms:

1. Supervised.

2. Unsupervised enumerate environment.

3. Reinforcement learning

In supervised learning, the task is to predict outputs y like housing prices (regression task) or
class labels (classification) from a previously unseen vector of input features x. For this task,
the machine is presented with labelled data during the training process. The aim is to learn the
parameters of a model in order to map every x to its corresponding y. Therefore, the algorithm
has to generalize and extrapolate from its training data in order to infer the correct output. A
typical example of a classification task is classifying a handwritten digit or assigning a name to
a photograph. Possible features, in this case, could include different handwritten numbers or
patterns present in the photograph. After training on a sufficient amount of training examples
(referring to images, say dogs and cats) with given features and their classification into either a
dog or a cat, the machine should be able to predict relatively well if a given new image of the
trained class.

On the other hand, unsupervised learning does not require input-output pairs since its main
goal is to find hidden structures in collections of data. Thus, it is usually employed for cluster-
ing, feature extraction, dimensionality reduction or anomaly detection. Simple examples are
algorithms like k-means clustering [MacQueen et al., 1967], or Principal Component Analysis
[Pearson, 1901]. Due to its ability to structure vast amounts of data, unsupervised learning
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algorithms are sometimes employed as an initial step of a supervised framework, as done in
[Avendi et al., 2016]. The idea of this approach is to reduce the multi-dimensional input to a
low-dimensional, sparse representation containing only the most important features of the
original data.

Reinforcement learning is yet another type of learning algorithm with a slightly different
goal: to maximize a given numerical long-term reward by taking the correct action in a given
situation [Sutton and Barto, 2018]. In contrast to the previously mentioned Machine Learning
paradigms, the machine/learner, in reinforcement learning, often called agent, is not explicitly
told which actions to take, such as classifying or structuring data. Instead, the agent interacts
with its environment over time and is supposed to exploit its experience to select an action from
a given set of actions, termed action space. At every time step, it is assigned one of the possible
states in state space and selects an action to alter its current state until it reaches a terminal state
and starts over. When transitioning to another state according to a state transition probability
which is dependent on the previous state and action, the agent receives a reward that again
depends on the previous state and action. This way, an association between states and actions
is learned, creating something like the experience of an agent. In reference to its long-term
goal, the agent aims to maximize the expectation of cumulative reward from each state rather
than the reward of single time steps [Li, 2017]

Reinforcement learning differs from supervised learning in that it does not require labelled
training examples, just like unsupervised learning. However, in contrast to unsupervised learn-
ing, it also does not ultimately try to identify structures in the data (although this strategy could
potentially support the process of maximizing reward). Furthermore, with its two key features,
trial-and-error and delayed reward, reinforcement learning is the ML paradigm most closely
related to learning from a biological and psychological perspective [Sutton and Barto, 2018].

2.2.1. Principal Component Analysis

Principal component analysis (PCA) is an unsupervised multivariate dimensionality reduction
approach that identifies relevant information from data and represents it as new orthogonal
variables called principal components [Hotelling, 1933] [Abdi and Williams, 2010]. In other
words, PCA reduces an n-dimensional feature space to a k-dimensional feature space while
retaining majority of the original information. It creates a new feature space of orthogonal
vectors called principal components, which are the compressed representation of the input.
Figure 2.1 shows the intuition behind the dimensionality reduction using PCA, where 2-D data
is projected onto a line(principal component) that covers most of the data. The position of the
principal component is based on the maximum variance in the data and minimum information
loss. A detailed explanation of the functioning of PCA is given below.

The origin of PCA dates back to 1901 by [Pearson, 1901], who described a statistical method to
fit/project points in space on lines and planes, and later it was formalized and named Principal
Component Analysis by [Hotelling, 1933]. Dimensionality reduction in PCA is achieved by
following the steps: Standardization of data, this step involves in normalization and scaling of
the data that avoids the bias toward the variables with the larger ranges(for example, the variable
having a range of 0-50 dominates the variable with a range of 0-1) therefore Standardization is
performed to centre the data at mean zero and unit variance. It is given as in Equation (2.1),
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Figure 2.1.: PCA [Pachter, 2014]. Representing 2-D data in 1-D using Principal Component
Analysis

𝑥 𝑗 =
𝑥 𝑗 − ` 𝑗
𝜎𝑗

(2.1)

where, 𝑗 is the feature in the dataset, 𝑥 𝑗 is values present in feature 𝑗 , ` 𝑗 and 𝜎𝑗 are the mean
and standard deviation of feature 𝑗 . Computation of covariance matrix, the covariance matrix is
a symmetric matrix of size 𝑛x𝑛 see Equation (2.2),

Σ =


𝑐𝑜𝑣(𝑥1, 𝑥1) 𝑐𝑜𝑣(𝑥1, 𝑥2) . . . 𝑐𝑜𝑣(𝑥1, 𝑥𝑛)
𝑐𝑜𝑣(𝑥2, 𝑥1) 𝑐𝑜𝑣(𝑥2, 𝑥2) . . . 𝑐𝑜𝑣(𝑥2, 𝑥𝑛)

...
...

. . .
...

𝑐𝑜𝑣(𝑥𝑛, 𝑥1) 𝑐𝑜𝑣(𝑥𝑛, 𝑥2) . . . 𝑐𝑜𝑣(𝑥𝑛, 𝑥𝑛)

𝑛×𝑛
(2.2)

where 𝑛 represents dimensions/features in the data. Covariance between the two features
quantifies the variability between them, i.e. whether a change in feature 𝑥1 results in a change
in feature 𝑥2. Finding principal components, previously calculated covariance matrix’s eigenvec-
tors(U) and eigenvalues(S) are computed to obtain the principal components. Equation (2.3)
calculates the eigenvectors and eigenvalues using singular value decomposition. The eigenvec-
tor is the vector of a matrix that does not change its direction when a scalar transformation is
applied, and the eigenvalue is the scalar/magnitude with which eigenvectors are multiplied.
The eigenvector of the largest magnitude eigenvalue constitutes the first principal component
which contains maximum possible information, and the eigenvector with the second largest
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eigenvalue constitutes the second principal component, etc.etc., until the nth eigenvector with
the smallest eigenvalue.

[𝑈, 𝑆,𝑉] = 𝑠𝑣𝑑 (Σ) (2.3)

The linear combination of the original features are principal components, where a majority
of the original information constitutes the first few principal components that are highly
uncorrelated. Dimensionality reduction, the previously computed principal components are
sorted in order of significance, with the most significant component being at the first and
the least significant component placed at the last. Dimensionality reduction is achieved by
eliminating the least significant components.

𝑈 =
[
𝑢1 𝑢2 . . . 𝑢𝑘 . . . 𝑢𝑛

]
(2.4)

Equation (2.4) depicts the eigenvectors arranged in descending order until n features where𝑈
is the orthogonal matrix of eigenvector space and corresponding 𝑢1, 𝑢2...𝑢𝑛 are the individual
eigenvectors of the new features.

𝑈𝑟𝑒𝑑𝑢𝑐𝑒 =
[
𝑢1 𝑢2 . . . 𝑢𝑘

]
(2.5)

Equation (2.5) represents the reduced eigenvector space, where the least significant vectors
are eliminated to reduce the dimensions. Finally projecting the original observations along
the principal component in this step, the data is reoriented from the original axis to the axis
represented by principal components using the transpose of the reduced eigenvector feature
space see Equation (2.6)

𝑧 = 𝑈𝑇𝑟𝑒𝑑𝑢𝑐𝑒𝑥 (2.6)

2.2.2. Neural Networks

As the name suggests, Artificial Neural Networks, a prevalent form of learning algorithms
in Computer Vision and Natural Language Processing, are also biologically inspired. In 1958
already, Rosenblatt [Rosenblatt, 1958] proposed the perceptron as a hypothetical nervous
system with some of the most fundamental properties of intelligent systems. The perceptron
was specifically inspired by photo-perceptrons of the retina, which respond to optical stimuli.
As shown in Figure 2.2, the perceptron aims at emulating the biochemical processes through
connections (referring to synapses) between multiple input units and one output unit (neurons).
Those connections are assigned weights, and the input is summed before applying an activation
function to produce the output:

�̂� = 𝜙

(
𝑊Tx

)
(2.7)

where 𝑊 is a column vector of all weights wn=1,2,...,N and x a column vector of all inputs xn.
Introducing x1 = 1 would be a simple way of adding a bias unit. 𝜙 denotes the activation function.
The output ranges from 0 to 1, which enables the perceptron to classify linearly separable

16



patterns. The perceptron is the simplest form of a Neural Network (NN). It consists of only one
layer as the input layer is not counted towards the depth of an NN [Wang and Raj, 2015].

Figure 2.2.: Illustration of a Single Perceptron

To solve problems with increasing complexity, the perceptron had to be extended to a multilayer
perceptron (MLP). In accordance with the name, an MLP consists of multiple layers of percep-
trons with a non-linear activation function in each layer. Stacking layers without intermediate
non-linear activations would not make sense since a combination of linear functions is still
a linear function. Thus, although the perceptron would become more complex, it would not
be able to reproduce more complex patterns. Hidden layers are between the input and output
layers where their output is not directly observed but contributes to generating the final output.
An example of an MLP is shown in Figure 2.3

Figure 2.3.: Simple three-layer NN (MLP)

For the MLP, Equation (2.7) then becomes:

�̂� = 𝜙

(
𝑊L𝜙

(
𝑊L-1...𝜙

(
𝑊1𝜙

(
𝑊0x + b0) + b1

)
... + bL-1

)
+ bL

)
(2.8)

with L referring to the number of layers (excluding input). While W is a column vector in
the perceptron due to the single output unit, Wl is a matrix in an MLP. It refers to the matrix
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of weights between all neurons in layer l and the neurons in layer l - 1. Biases bl are now
explicitly modelled for every neuron and are hence column-vectors with the number of elements
corresponding to the number of neurons in layer l.

Typical non-linear activation functions like the sigmoid function 𝜎 (𝑧) = 1
1+e-z or hyperbolic

tangent tanh(z) = ez−e-z

ez+e-z were also originally developed to model action potentials of biological
neurons. This is because the output of those functions ranges from 0 to 1 (corresponding to no
activation and activation) in the case of sigmoid and -1 to 1 for tanh, which could be interpreted
as inhibitory and excitatory output. Classically, these activation functions are rather employed
for hidden layers, whereas the last layer’s activation function depends on the task of the NN. In
the case of regression, a simple linear function is employed, binary classification usually uses
sigmoid and multi-class uses a so-called soft-max function. As can be seen below, the soft-max
assigns every pair of input examples and output class k a probability. For every input, the sum
of the probabilities over all K classes is 1.

softmax (zk) =
ezk∑K
j=1 ezj

(2.9)

Learning an (Artificial) Neural Network can be briefed as a supervised learning algorithm, it
requires labelled training data. The NN is initialized with random weights and then trained
in an iterative process comprising three steps: The first step is a forward propagation step in
which a single training example is passed as an input through the NN to generate an output.
Performance can be evaluated using the provided label and a predefined loss function. A typical
loss function for binary classification is the cross-entropy loss.

L (𝑦, �̂�) = −y · 𝑙𝑜𝑔 ( �̂�) − (1 − y) · 𝑙𝑜𝑔 (1 − �̂�) (2.10)

Where y is the true label and �̂� is the predicted one. The loss is averaged over all training
examples. In the third step, the weights of the network are adjusted to decrease the difference be-
tween actual and desired outputs. The most common method for this is gradient descent, which
exploits the back-propagation routine [Rumelhart et al., 1986] Gradient descent is a method
generally applied to optimization problems that try to find minima in a multi-dimensional loss
landscape (one dimension per parameter). Back-propagation transmits the calculated error
back through the NN according to the chain rule. Then, the weights are adjusted based on
their computed influence on the error. After the weights are upgraded, another iteration starts.
Due to the use of the chain rule in back-propagation, activation functions are required to be
differentiable.

Training of a neural network could also be done in batches to decrease memory requirements
for CPU/GPU (Central/Graphics Processing Unit). In this case, the training data is split into
n batches of a specific batch size. The loss is calculated for each batch and back-propagated
for optimization. One round of forward propagation, loss computation, back-propagation and
updating of the parameters on all batches is called an epoch. Consequently, smaller batch sizes
decrease memory requirements but make the training procedure more stochastic.

The strength of NNs with non-linear activation function is that a mere two-layer version can
potentially approximate every continuous function, meaning mapping from x to y, with a
finite number of hidden units, provided it possesses enough of those [Hornik, 1991]. The same
approximation accuracy can be reached when introducing more hidden layers [Bengio, 2009].
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Deeper architectures are favoured over shallow ones, however, because shallow architec-
tures require exponentially more units than deeper ones to reach the same training accu-
racy [Cohen et al., 2015]. Additionally, deeper models generalize better at the same training
accuracy and are easier to regularize. Nonetheless, deep networks were not frequently used
before 2006 as they were considered hard to train. One problem with deep NNs are exploding
and vanishing gradients. The latter implies the problem that gradients can become negligible
in early layers of very deep architectures during back-propagation. The reason for this is that
the slope of tanh and sigmoid is very small when approaching their limits. Exploding gradient
means that the values for the gradients increase to such an extent that they exponentially
increase at some point. This, however, is less of an issue and mainly due to inadequate pa-
rameter initialization. Xavier initialization [Glorot and Bengio, 2010] and He initialization
[He et al., 2015] on the other side are two clever ways of weight initializations that actually
facilitate training of Deep Neural Networks (DNNs).

In recent years, Deep Learning (DL) has experienced a tremendous increase in use thanks to
advances in multiple areas. Specialized hardware like GPUs, which enable huge performance
boosts due to parallelization, made training of deep architectures feasible. Simultaneously,
DNNs’ insatiable hunger for labelled data has increased with the increase of sensors like
cameras and microphones in smartphones and payment of simple labelling jobs on platforms
like Amazon Mechanical Turk. Moreover, algorithmic innovations mitigated the problem
of vanishing gradients. For instance, the rectified linear unit ReLU [Hahnloser et al., 2000]
[Nair and Hinton, 2010] represents an activation function that does not display vanishing
gradients in the positive range. It is defined as max (0, z). In order to remove the problem of
vanishing gradients in the negative range, leaky ReLUs [Maas et al., 2013] modify the slope to
be non-zero for negative inputs as well. It is formalized as max (𝛼 · z,z) where 𝛼 is a selected
hyperparameter. Likewise, gradient descent was refined to be able to deal better with non-
convex error landscapes. From this arose gradient descent with momentum, RMSprop and the
Adam algorithm [Kingma and Ba, 2015], which are among the primary optimization algorithm
utilized in DNNs nowadays.

2.2.3. Specific NN Types

In both unsupervised and supervised learning, there are specific types of Neural Networks
which are notably popular. In supervised learning, Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) have become the methods of choice. Due to its
relevance to this thesis, the emphasis in the following will be on CNNs. Convolutional Neural
Networks (CNNs) are most frequently used for Image Analysis, in which the system learns
by selecting relevant features from the provided images as part of the whole task. While a
standard NN receives input in the form of a vector (which could be raw pixel values for an
image), a CNN receives as input the image as an array of pixel values in its original two- or
even three-dimensional form. CNNs process a small patch of the image at a time. This way,
they detect low-level features like edges in early layers. In layers closer to the output, the
detected low-level features are combined to detect more complex features like shapes.

The structure of a CNN can be broken down into three basic building blocks: convolutional
layers, pooling layers and fully connected layers. Fully connected (FC) layers resemble layers
in standard NNs since their multi-dimensional input is flattened into a one-dimensional vector
which serves as input to the subsequent layer after the application of the activation function.
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Typically, FC layers are only used as the last layers of a CNN that, for example, feed into a
sigmoid or softmax function for binary or multi-class classification.

The convolution (conv) layer functions in a different way when compared to other NNs which
engage weights, biases connection and a weighted sum. Instead. It contains filters that extract
relevant information from the images. The filter weights in a conv layer are not specified but
are learned by the CNN during the training process. The output of a conv layer is as follows:
The image is superimposed with a filter, starting in the top left corner. Every pixel value is
multiplied with the corresponding filter weight, summed up, and a bias is added. This weighted
sum is passed through one of the previously introduced non-linear activation functions and
then makes up the first value of the output matrix. In an iterative process, the filter is shifted
over the input along both dimensions until every possible image patch of filter size has been
covered and the complete output matrix is created. Output size depends on stride s (how many
steps is the filter moved by in every step), filter size f x × f y, amount of padding p and number
of filters (“channels”) nc in layer l:

𝑛𝑙−1𝑥 = 𝑓 𝑙𝑜𝑜𝑟

(
𝑛𝑙𝑥 − 𝑓 𝑙𝑥 + 2𝑝𝑙

𝑠l

)
+ 1 (2.11)

where nx denotes the height of the output image. The width could be calculated the same way,
but usually, images, as well as filters, are of quadratic shape. All filters in the same layer have
the same size. Consequently, all 2D outputs have the same size and can be stacked to produce
the 3D output of shape 𝑛𝑙𝑥 × 𝑛𝑙𝑦 × 𝑛𝑙−1𝑥 = 𝑐. Hence, filter depth is also 𝑛𝑙−1𝑐 . In the input layer, nc
equals the number of colour channels, i.e. three in case of an RGB image and one for greyscale
images.

Pooling (pool) layers typically use filters of size 2 × 2, have no trainable parameters and are
applied with stride two without padding. One distinguishes two common forms of pooling:
average pooling and the nowadays more frequently used max pooling. In average pooling,
the output is formed by taking the average value of the overlaid image patches, whereas in
max-pooling, simply the maximal value is obtained. The idea is to identify the presence of high
numbers, which could indicate the detection of a feature.

CNNs exhibit some major advantages over usual NNs. Due to the interconnections of all
neurons in a standard NN, the number of parameters increases exponentially with image size.
Soon, memory requirements become infeasible and training times eternal. In comparison,
CNNs have a comparably small amount of parameters, which do not depend on input image
size but on the number and size of the filters in convolutional layers and the number of units in
a potential FC layer. Additionally, connectivity in CNNs is sparse, i.e. each output value in each
layer only depends on a small number of inputs. A third advantage is the preservation of spatial
information due to translation invariance. The first real-world application of a CNN was the
recognition of handwritten digits [LeCun et al., 1998]. The NN built for this task is displayed in
Figure 2.4 to illustrate the simple building blocks of a CNN. The network was named LeNet-5
after its inventor. It consists of only 60000 parameters in five layers (pool layers are not counted
due to their absence of trainable parameters) and uses sigmoid and tanh activation functions.
Yet, it took another 15 years and lots of technical and algorithmic innovations until CNNs were
widely considered the method of choice in natural Image Analysis.

The breakthrough was initiated by the contribution of [Krizhevsky et al., 2012] to the ImageNet
classification challenge in which an incredible 1.2 million small images had to be classified into
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Figure 2.4.: Structure of LeNet-5 [LeCun et al., 1998]. Subsampling: avg pool layers. Feature
maps indicate intermediate outputs

1000 different categories. AlexNet, with its already 60 million parameters in 8 layers, made
use of the ReLU activation function and won the competition by far. Another technique that
yielded big performance boosts for AlexNet was dropout [Hinton et al., 2012], which prevents
co-adaptation of feature detectors in such NNs by randomly shutting off a certain percentage
of the neurons during training.

Since then, further progress on benchmark datasets for several tasks has been made by introduc-
ing deeper architectures. Simonyan and Zisserman [Simonyan and Zisserman, 2015] increased
the depth to 16-19 layers in their VGG16 and VGG19 network, respectively, to win the ImageNet
challenge 2014 in the categories of classification and localisation. They employed a systematic
increase of channels and simultaneous decrease of image size with advancing depth in their 138
million parameter network. [Szegedy et al., 2015] increased both the width and depth of their
network by introducing Inception blocks. An Inception block consists of multiple parallel conv
layers with different filter sizes and a max-pooling layer whose output is concatenated in the
usual fashion. Further peculiarities included auxiliary classifiers that check how predictions
with the output of intermediate layers relate to the desired outputs and 1×1 convolutions
after [Lin et al., 2014] for dimensional reduction. Their emerging GoogLeNet consisted of nine
such inception layers and performed even better than VGG on the classification task of the
ImageNet 2014 challenge.

As previously mentioned in Section 2.2, very deep networks become difficult to optimize. Thus,
new concepts were introduced to mitigate these problems. One pivotal idea in this context were
residual blocks [He et al., 2016]. They essentially represent short-cuts in the network where
activations are feed-forwarded to a deeper layer. While adding more layers can sometimes
even decrease performance (due to dying activations because of weight decay), residual blocks
allow learning the identity function such that performance is not decreased but potentially
increased.

Convolutional Neural Networks (CNNs) are often trained as supervised techniques, which
implies the classification of images based on their attributes. However, as mentioned in
Section 2.2.3, CNNs learn to detect and extract relevant features from the image, allowing
CNNs to be used in unsupervised learning methods like Autoencoders discussed below.

Autoencoder is an unsupervised learning approach wherein a neural network is trained to
map or transform its input x to its output �̂� with minimum distortion but to maintain the same
size N as the input. Being conceptually simple, Autoencoders plays a vital role in Machine
Learning. Autoencoders were introduced in the 1980s by [Rumelhart et al., 1986] to tackle the

21



issue of “back-propagation without a teacher”, basically by using input data as the label. Since
then, the Autoencoders have been traditionally used for dimensionality reduction or feature
learning for decades [Lecun, 1987] [Bourlard and Kamp, 1988] [Zemel and Hinton, 1993]

Internally, Autoencoder has a hidden layer z of size M, known as a bottleneck. The bottleneck in
the network represents the compressed knowledge of the original input. Sending the input data
through the M-sized bottleneck layer gives the compression ratio 𝐶𝑅 = 𝑁/𝑀 . The primary
elements of an Autoencoder can be split into two blocks: encoder and decoder. The encoder
layer represents the compressed form of input (up-to bottleneck layer), the encoder function is
defined by 𝑧 = 𝑓 e (𝑥). The decoder layer then reconstructs an approximation of the original
input, the function is defined by �̂� = 𝑓 d (𝑧) as shown in Figure 2.5.

Figure 2.5.: Structure of single layer Autoencoder

Similar to other Neural Network techniques, the Autoencoders may also be trained with mini-
batch gradient descent by computing the gradients using back-propagation [Linnainmaa, 1970].
It totally boils down to feeding the network a set of sample data to learn the functions
𝑓 e (𝑥) , 𝑓 d (𝑧) using a training algorithm to minimize the reconstruction error, L (𝑥, �̂�), which
basically measures the difference between the original input to the reconstructed output
of the Autoencoder. A general loss function used to train the Autoencoder is given as
[Sangari and Sethares, 2016]:

L (𝑥, �̂�) = 1
𝑁

𝑁∑︁
𝑛=1

(𝑥 [𝑛] − �̂� [𝑛])2 (2.12)

Equation (2.12) denotes the mean squared error (MSE) between the original input x[1,2..n] and re-
constructed output �̂�[1,2..n], where N is the input size. Contrary to feedforward Neural Networks,
the autoencoders could also be trained using recirculation [Hinton and McClelland, 1987],
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which is a learning technique that aims to discover whether the hidden layer represents the in-
put layer by comparing the activations on the input to the activations on the reconstructed input.
Recirculation is considered more biologically plausible than back-propagation [O’Reilly, 1996],
but it is seldom used in Machine learning applications.

In the Autoencoders, the encoder and decoder layers are the neural networks with non-linear
operations [Ranzato et al., 2007]. So in this particular case, if the encoder function and the
decoder function are linear operations, we get a linear Autoencoder [Baldi and Hornik, 1989].
A linear Autoencoder without the non-linear operations would achieve a similar latent repre-
sentation and dimensionality reduction as Principal Component Analysis (PCA) [Plaut, 2018].
Therefore, the Autoencoders are thought to be a generalized version of PCA, where it can learn
non-linear manifolds instead of discovering a lower-dimensional hyperplane that describes the
original data. Figure 2.6 demonstrates the difference between these two approaches. The

Figure 2.6.: Comparison between PCA and Autoencoder
[Jolliffe and Cadima, 2016]

bottleneck in the network is a critical attribute in the design of an Autoencoder. Without proper
knowledge of the bottleneck information, the network could memorize the inputs by simply
passing the values through the network. Therefore choosing the bottleneck layer size, which
is less than that of input, limits the amount of input information that can traverse through
the network. Hence forcing the compression of input data by restricting the highly correlated
redundant data.

In the recent years, the Autoencoders have risen to the foreground in the “deep architecture”
approach [Hinton et al., 2006] and stacked Autoencoders [Hinton and Salakhutdinov, 2006]
[Bengio et al., 2007] are similar approaches wherein the autoencoders are stacked greedily
together in a layer by layer format, and each layer is pre-trained in an unsupervised fashion to
learn the nonlinearities of the inputs, along with a supervised learning phase that fine-tunes
the entire architecture with the gradient-based optimization. This approach can be used in
transfer learning, and these deep architectures tend to be showing state-of-the-art results on
classification and regression problems [Baldi, 2012].
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Autoencoders are one of the well-known and frequently used methods in Deep Learning,
and different Autoencoder architectures are designed to address specific problems like di-
mensionality reduction [Wang et al., 2014], image compression [Cheng et al., 2018], anomaly
detection [Sakurada and Yairi, 2014], information retrieval [Billings, 2018], and data denoising
[Vincent et al., 2010]. Simple 3 hidden layer architecture for compression can be visualized

Figure 2.7.: Simple 3 hidden layered Autoencoder
[Jordan, 2018a]

in Figure 2.7. The input data x[1,2,..6] is compressed to a[1,2,3] in the hidden layer, forcing the
Autoencoder to obtain useful information from the original input by learning to capture laten-
t/salient features of training data. This architecture is known as undercomplete Autoencoder.

Recent studies have shown that the Autoencoders, along with the applications like compression,
can also be a generative model known as Variational Autoencoders (VAE) [Kingma and Welling, 2014]
[Rezende et al., 2014]. The bottleneck layer in the hidden layer of the Autoencoder is also
known as latent space. The latent space is the non-regularized representation of the input
because of the Autoencoder architecture, dimensions of the latent space, and input data distri-
bution, limiting content generation capability. Variational Autoencoder overcomes the problem
of non-regularized latent space by providing probabilistic distributions for every input in
the latent space and imposing a constraint by forcing the latent distribution to be a normal
distribution.

For example, Figure 2.8 shows the intuition behind an ideal Autoencoder latent space represen-
tation. An Autoencoder is trained on the dataset of faces with six hidden layer dimensions,
and it learns the six attributes by the compressed representation of the observations in latent
space. In other words, the input image is described as six single vector attributes in the latent
space. However, a Variational Autoencoder can describe each latent attribute in the encoder as
a range of possible probabilistic distributions of the given input, as shown in Figure 2.9, and the
decoder randomly samples from the encoded distributions to generate a vector as the decoder
model input. By randomly sampling the vector from distributions, the network is forced to be
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a continuous and regularised latent space that will be able to reconstruct the given input. The
decoder model in Variational Autoencoder is referred to as the generative model.

Figure 2.8.: Intuition behind Working of an Autoencoder
[Jordan, 2018b]

Figure 2.9.: Intuition behind Working of a Variational Autoencoder
[Jordan, 2018b]

In practice, the implementation of the Variational Autoencoders is similar to that of ideal
Autoencoders, except the encoder in the Variational Autoencoders returns the latent proba-
bilistic distributions of the input. The encoded distributions are then forced to be closed to a
normal distribution so that the encoder can be trained on the mean and standard deviation
of each latent attribute. A sampled latent vector from the mean and standard deviation is
passed to the decoder to reconstruct the original input. Variational Autoencoder is trained
to minimize the reconstruction error using the mean squared loss function to maximize the
encoder-decoder performance and minimize regularization error to make encoder distributions
close to that of a normal distribution to regularize the latent space. The regularization term
used is Kullback–Leibler divergence [Kullback and Leibler, 1951],𝐷KL (𝑃 ∥ 𝑄) which measures
the difference between the probabilistic standard distribution Q from the input probabilistic
input data distribution P. In Variational Autoencoder, the regularization loss is expressed as
KL divergence between the latent distribution and the standard Gaussian distribution with
mean as zero and unit variance. Figure 2.10 represents the block diagram of the Variational

25



Autoencoder, where the input x is passed through the encoder, which outputs the mean and
standard deviation of latent attributes N (`x, 𝜎x). The sampled latent vector 𝑧 ∼ N (`x, 𝜎x) is
then passed to the decoder for reconstructing the input �̂�.

Figure 2.10.: Variational Autoencoder block diagram
[Joseph, 2019]

As shown in Equation (2.13) the loss function is defined as the sum of reconstruction loss and
the regularization loss.

𝑙𝑜𝑠𝑠 = L (𝑥, �̂�) + 𝐷KL (N (`x, 𝜎x) ∥ N (0, 𝐼)) (2.13)

L (𝑥, �̂�) is the reconstruction loss, which is already discussed in the previous Autoencoder
section Equation (2.12), where as 𝐷KL (N (`x, 𝜎x) ∥ N (0, 𝐼)) is the KL divergence, which is
difference between the Gaussian distribution of zero mean and unit variance N (0, 𝐼) and
the Gaussian distribution of latent space N (`x, 𝜎x). As mentioned above, the latent space is
randomly sampled from the encoder distribution to feed it to a decoder. When training the
architecture, this random sampling makes the network challenging to backpropagate since
the errors cannot be traced back with the randomization of the sample. To overcome the
issue of backpropagation a reparameterization trick is leveraged, which allows the network
to propagate errors by shifting the latent space mean `x and scaling the variance 𝜎x with a
randomly sampled unit Gaussian 𝜖 . The latent space z with the reparameterization trick is
denoted by Equation (2.14)

𝑧 = `x + 𝜎x · 𝜖 (2.14)

`x is the mean, 𝜎x is the variance of the latent distribution of input and 𝜖 is the randomly
sampled unit Gaussian, where 𝜖 ∼ N (0, 𝐼).

2.3. Compression Metrics

Evaluation of a model/algorithm plays a vital role in any project. This work employs three
metrics, i.e. compression ratio, structural similarity index and Peak signal to noise ratio, which
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measures and evaluate the performance of a compression algorithm.

2.3.1. Compression ratio

The compression ratio is referred to as the ratio of the original image size to the compressed
image size, and it is calculated as in Equation (2.15):

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑖𝑜(𝐶𝑅) = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑠𝑖𝑧𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑𝑠𝑖𝑧𝑒
(2.15)

2.3.2. Structural Similarity Index Matrix

Structural Similarity Index was first introduced by [Wang et al., 2004] as a metric which mea-
sures the similarity of two images. It is based on the human visual perceptual system, which has
the capability to identify and differentiate between the two images. Hence SSIM was introduced
to replicate the behaviour and find the structural information of the reference and the sample
images. The similarity value is assessed on a scale of -1 to +1, with +1 indicating that the two
images are identical and -1 indicating that they are distinct.

Structural Similarity is measured by extracting three key features from an image that are
luminance, contrast and structure. Luminance is calculated by averaging all pixel values and is
represented by the symbol `(Mu) see Equation (2.16):

`x =
1
𝑁

𝑁∑︁
𝑖=1

𝑥i (2.16)

Contrast is calculated by taking standard deviation over all the pixels and it is denoted by 𝜎
(sigma) as in Equation (2.17):

𝜎x =

√√√
1

𝑁 − 1

𝑁∑︁
𝑖=1

(𝑥𝑖 − `𝑥)2 (2.17)

Structure is calculated by dividing the input signal with standard deviation given by (𝑥 −
`𝑥/𝜎𝑥).

The luminance comparison of two images is given by a function 𝑙 (𝑥, 𝑦) as in Equation (2.18):

𝑙 (𝑥, 𝑦) =
2`𝑥`𝑦 + 𝐶1

`2𝑥 + `2𝑦 + 𝐶1
(2.18)

where `𝑥 and `𝑦 are the mean of images x and y respectively and 𝐶1 is a constant which
prevents the denominator from null value.

The contrast comparison function of two image is given as 𝑐(𝑥, 𝑦) as in Equation (2.19):
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𝑐(𝑥, 𝑦) =
2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2
(2.19)

where 𝜎𝑥 and 𝜎𝑦 are the standard deviation calculated from the two images and 𝐶2 is a
constant.

The structure comparison function is given as Equation (2.20):

𝑠(𝑥, 𝑦) =
𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
(2.20)

where 𝜎𝑥𝑦 is defined as 1
𝑁−1

∑𝑁
𝑖=1(𝑥𝑖 − `𝑥) (𝑦𝑖 − `𝑦). and 𝐶3 is a constant.

Finally the SSIM score is given by Equation (2.21):

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) = [𝑙 (𝑥, 𝑦)]𝛼 · [𝑐(𝑥, 𝑦)]𝛽 · [𝑠(𝑥, 𝑦)]𝛾 (2.21)

where 𝛼 > 0, 𝛽 > 0, 𝛾 > 0 are the parameters which adjusts the relative importance of
their respective components. To simplify the Equation (2.21) we assume 𝛼 = 𝛽 = 𝛾 = 1 and
𝐶3 = 𝐶2/2 we get:

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) =
(2`𝑥`𝑦 + 𝐶1) (2𝜎𝑥𝑦 + 𝐶2)

(`2𝑥 + `2𝑦 + 𝐶1) (𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2)
(2.22)

2.3.3. Peak Signal to Noise Ratio

Peak signal to noise ratio is the ratio of maximum achievable signal power to distorting noise
power, which influences the quality of its representation and is computed in decibels. PSNR
is the commonly used metric for determining the quality of reconstruction in lossy image
compression codecs, where the original data is referred to as the signal, while the noise is the
errors/disturbances caused by compression or distortion. PSNR is expressed as Equation (2.23)

𝑃𝑆𝑁𝑅 = 10 log10

(
𝑝𝑒𝑎𝑘𝑣𝑎𝑙2

𝑀𝑆𝐸

)
(2.23)

where peakval is the maximum pixel value in the image data and MSE is the mean square error
of the two images. High Peak signal to noise ratio values are considered to be an image closer
to the input image.

Summary

This chapter introduces the basics of compression and the different types of compression tech-
niques used in this thesis. The detailed explanation of Machine Learning and Neural Networks
gives a basic understanding of how CNNs, Autoencoders and Variational Autoencoders function.
Finally, the different metrics mentioned in this work help to evaluate different approaches.
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Chapter 3.

Autoencoder Implementation

This chapter provides a short overview of extracting and processing data and implementing different
Autoencoder architectures along with sample code listing. This chapter begins by describing the
purpose of data processing in Machine Learning and the netCDF climate data file structure. Further,
accessing the data from the netCDF file is described in code format. Finally, a brief understanding
of the feature scaling is provided, followed by implementing the different Autoencoder architectures
and their motivation, including a simplified code description of the single-layer Encoder-Decoder
model.

3.1. Data Processing

The processing of raw data has been given at most priority in any Machine Learning architecture
so that the data can be adapted to the designed architecture by eliminating the scope of
redundant and unwanted information [Famili et al., 1997]. The employed climate data is
stored in the netCDF (network Common Data Form) format, which is used to store multi-
dimensional Geographic Information System (GIS), atmospheric, climate, and ocean model data
in the form of ‘.nc’format. In this work, the Python xarray package [Hoyer and Hamman, 2017]
is used to access the climate data from the netCDF file format.

Figure 3.1.: netCDF file structure of temperature variable
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Figure 3.1 shows the netCDF file structure of temperature variable. The climate dataset is an
array of four dimensions, i.e. time, level, latitude and longitude, containing floating-point num-
bers. The time dimension indicates the number of samples in the dataset, the level dimension
implies 13 different pressure levels at which the data is collected, and latitude-longitude(32x64)
are the image dimensions of pixel intensity values present in the dataset. The pixel intensity
value of the climate data is then stored in a NumPy array. From the code Listing 3.1, Line 1
shows reading temperature data from the dataset using xarray package, Line 2 selects ten years
of data and Line 3 to Line 14 shows creating a pandas dataset and storing the pixel intensity
values of temperature variable as an array.

1 temperature =

↩→ xr.open_mfdataset("weatherbench /5.625 deg/temperature /*.nc")

2 decade_temperature_chunk = temperature.sel(time=slice('1979',

↩→ '1989'))

3 decade_temperature_df = pd.DataFrame(columns =["data",

↩→ "timestamp", "filename"])

4 for ts in decade_temperature_chunk.t:

5 timestamp = ts.coords['time']. values

6 data_array = ts.values

7 filename = np.datetime_as_string(timestamp , unit="s")

8 filename = filename.replace('-', '')

9 filename = filename.replace(':', '')

10 decade_temperature_df = decade_temperature_df.append ({

11 "data": data_array ,

12 "timestamp": timestamp ,

13 "filename": filename

14 }, ignore_index=True)

Listing 3.1: Extracting pixel intensity temperature values

Feature scaling is an essential phenomenon in data processing. In many datasets, the feature
values vary widely. Different features have a diverse range of values, which hinders many
Machine Learning algorithms from drawing the similarities between features and fail to give
importance to the smaller features. Feature scaling is termed to reduce the model training time
complexity by improving the convergence speed of the algorithm in the stochastic gradient
descent approach [Ioffe and Szegedy, 2015] [Grus, 2019]. The commonly used feature scaling
method is min-max normalization (Rescaling), which scales the features to a range [0,1]. The
scaling formula is given as follows Equation (3.1)

𝑥 ′ =
𝑥 − 𝑥min

𝑥max − 𝑥min
(3.1)

where x is an original feature value, 𝑥 ′ is normalized value of x, xmin is the minimum value
present in the feature space and xmax is the maximum value. In this work, different versions of
Autoencoders were implemented, which are discussed in the following section.
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3.2. Implementation of Different Autoencoder
Architectures

As discussed in the previous Section 2.2.3, Autoencoders show high potential in compressing
data when compared to other techniques [Liu et al., 2021b], mainly because of the design of
its architecture, and Convolutional Neural Networks architectures are essential in extracting
important features from the input image [Krizhevsky et al., 2012]. Therefore in this work,
an Autoencoder using Convolutional layers is preferred over a simple traditional Autoen-
coder [Mao et al., 2016] [Zhang, 2018]. To compress the input representations, downsampling
operations in the encoder and upsampling operations in the decoder are required in the Con-
volutional Autoencoder architecture. Nonetheless, the successive downsampling operations
in the encoder will reduce the quality of the image when reconstructed. [Theis et al., 2017]
points out that convolving the images first and then upsampling results in achieving super
high resolutions more efficiently. Therefore, the architecture with convolutions followed by
max-pooling(downsampling) seen in Figure 3.2, is designed.

The Autoencoder architectures were implemented in Keras from the available Keras base
layers [Chollet et al., 2015]. Keras is a high-level API for Neural Networks, which is written
in Python and able to run on top of lower-level Machine Learning libraries like TensorFlow
[Abadi et al., 2015] was chosen for this work. For ease of understanding, the code fragment of
a single layer is shown. Code Listing 3.2 explains the simple implementation of an encoder
layer using Keras in TensorFlow. As previously stated, the input image is 32x64x1. As a result,
the encoder model’s input layer in Line 3 should similarly have the dimensions 32x64x1. An
input image of shape 32x64x1 is convolved through a 2-D convolution layer in Line 4 using a
3x3 kernel with a ReLu activation function, and a pooling/downsampling layer in Line 5 of 2x2
reduces the spatial size of the convoluted image by factor 2. For a detailed understanding of
convolution and max-pooling, see Section 2.2.3. Finally, Line 6 constitutes an encoder model.

1 latitude = 32

2 longitude = 64

3 input_img = tensorflow.keras.layers.Input(shape=(latitude ,

↩→ longitude , 1), name="encoder_input")

4 x = tensorflow.keras.layers.Conv2D (256,(3, 3), activation='relu',

↩→ padding='same', name="encoder_1")(input_img)

5 x = tensorflow.keras.layers.MaxPooling2D ((2, 2), padding='same',

↩→ name="MaxPooling_1")(x)

6 encoder_model = tensorflow.keras.models.Model(input_img , x,

↩→ name="encoder_model")

Listing 3.2: Single layer Encoder Implemntation

Code Listing 3.3 explains an example of a single layer decoder model of the Autoencoder using
TensorFlow, Line 1 takes an encoder compressed image, Line 2 convolves the encoded image
and Line 3 uses upsampling to reconstruct the image into its original shape. The activation
function in the final layer Line 4 of the decoder is the sigmoid activation function. It forces the
outputs to be in the range of [0,1] so that the outputs represent the normalized pixel intensity
values of the image and prevent the model from overshooting. Line 5 encloses the above lines
into a complete decoder model.
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1 decoder_input = tensorflow.keras.layers.Input(shape=( compressed

↩→ shape), name="decoder_input")

2 x = tensorflow.keras.layers.Conv2D (128, (3, 3),

↩→ activation='relu', padding='same',

↩→ name="decoder_2")(decoder_input)

3 x = tensorflow.keras.layers.UpSampling2D ((2, 2),

↩→ name="UpSampling_1")(x)

4 decoder_output = layers.Conv2D(1, (3, 3), activation='sigmoid ',

↩→ padding='same',name="decoder_output")(x)

5 decoder_model = tensorflow.keras.models.Model(decoder_input ,

↩→ decoder_output , name="decoder_model")

Listing 3.3: Single layer Decoder Implemntation

Code Listing 3.4 explains compiling and training of a simple Autoencoder. Line 2 to Line 4
shows enclosing encoder and decoder model to form an Autoencoder model. Model Compile
method in Line 6 allows the user to configure the learning process of the model. The parameters
passed in the compile method are:

1. Optimizers optimize the weights by comparing the prediction and the loss function.
[Schmidt et al., 2020] evaluates the performance of all existing optimizers and shows
that the Adam optimizer outperforms other optimizers on the Variational Autoencoder
benchmark. Therefore Adam optimizer is used in this study.

2. Loss function evaluates the performance by finding the deviations or errors in the learning
process. This work uses mean square error as a loss function, see Equation (2.12).

3. Metrics are similar to the loss function but not used in the training process. Structural
similarity index matrics and Peak signal to noise ratio are used in this thesis. For a
detailed description of the losses, see Section 2.3.2 and Section 2.3.3.

Line 8 fits the data on the compiled model and checks if it is the best fit for the problem
statement. The parameters passed are input data as training data(NumPy array), number of
iterations to train the model, size of a single batch input, shuffling the data after each iteration,
validation data validates the performance over each iteration, and callback saves trained the
model weights and training results after every epoch.

1 # Combining Encoder and Decoder to form an Autoencoder

2 encoded = encoder_model(input_img)

3 decoded = decoder_model(encoded)

4 autoencoder = Model(input_img , decoded)

5 # Final step before training , compiling the AE to use loss as

↩→ training parameter

6 autoencoder.compile(optimizer=tf.keras.optimizers.Adam(),

↩→ loss=losses.MeanSquaredError (),metrics =[PSNR ,SSIM])

7 # Training an Autoencoder with batchsize of 1025 until 15 epochs

8 autoencoder.fit(train_data , train_data , epochs =15,

↩→ batch_size =1024, shuffle=True ,

↩→ validation_data =( validation_data ,validation_data),

↩→ callbacks =[ cp_callback ,csv_logger ])

32



Listing 3.4: Compiling and training the Autoencoder

Different Autoencoder architectures were implemented to compare the difference in compres-
sion ratio, reconstruction error, structural similarity index (SSIM) and the peak signal to noise
ratio(PSNR) between these architectures, which are discussed later in the Chapter 5. Following
is a detailed explanation of different Autoencoder architecture implementations.

3.2.1. Five-Layered Autoencoder

Figure 3.2.: 5Layered Encoder-Decoder (Autoencoder) block diagram

Figure 3.2 represents a simple Autoencoder with five layers in the encoder with convolution,
ReLU activation layer and max-pooling(downsampling) layers in each layer and five layers in
the decoder with convolution, ReLU activation layer and upsampling layers in each consecutive
layer, where an input image of shape 32x64x1 is reduced/compressed to 1x2x16 shape in the
encoder and reconstructed back to its original shape in the decoder.

3.2.2. Four-Layered Autoencoder

Figure 3.3 represents a simple Autoencoder with four layers in the encoder with convolution,
ReLU activation layer and max-pooling(downsampling) layers in each layer and five layers in
the decoder with convolution, ReLU activation layer and upsampling layers in each consecutive
layer, where an input image of shape 32x64x1 is reduced/compressed to 2x4x16 shape in the
encoder and reconstructed back to its original shape in the decoder.
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Figure 3.3.: 4Layered Encoder-Decoder (Autoencoder) block diagram

3.2.3. Six-Layered Autoencoder

Figure 3.4 represents a simple Autoencoder with six layers in the encoder with convolution,
ReLU activation layer and max-pooling(downsampling) layers in each layer and five layers in
the decoder with convolution, ReLU activation layer and upsampling layers in each consecutive
layer, where an input image of shape 32x64x1 is reduced/compressed to 1x2x8 shape in the
encoder and reconstructed back to its original shape in the decoder.

Figure 3.4.: 6Layered Encoder-Decoder (Autoencoder) block diagram
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3.2.4. Variational Autoencoder

Figure 2.10 the designed Variational Autoencoder architecture framework is based on previ-
ous methods [Tabacof et al., 2016] [Gondim-Ribeiro et al., 2018]. Unlike these methods, the
architecture is extended to deep layers with flattened and dense layers. Unlike the regular
Autoencoder, Variational Autoencoder in the encoder creates a latent normal distribution of
mean and variance from the input. Due to this ability, the encoder model is sometimes referred
to as the recognition model. The decoder generates a latent vector by randomly sampling from
the distributions, which is further reconstructed as the original input. Sometimes the decoder
model in the VAE is considered the generative model.

Figure 3.5.: Variational Autoencoder block diagram

Summary

From this chapter, we get to know how the climate data is extracted from the dataset. Then,
we learn to normalize the data in order to avoid complex computations during the training of
the architectures that might take a toll on the hardware resources. Finally, we implemented
different architectures of Autoencoders to find which architecture achieves a better combination
of high compression and low reconstruction loss.
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Chapter 4.

Related Work

Compressing vast volumes of scientific data, such as climate data, is not new. This chapter gives a
summary of studies on climate data compression using Autoencoders, as well as a comparison to
state-of-the-art lossy compression approaches. This chapter starts by describing the papers that
used Autoencoders to compress climate data along with a combination of other techniques. Further,
this chapter discusses the weather bench paper. Finally, this chapter concludes by describing related
work on SZ compressing HPC data.

The use of Autoencoders in compression has been a research study for many years. [Liu et al., 2021b]
demonstrates a three-layer fully connected Autoencoder for encoding and decoding scientific
data, which includes climate data. Each layer of the architecture compresses the data by a
factor of eight, resulting in a potential compression factor of 512. To limit the relative error, the
authors, after computing the difference between the input and reconstructed data, store the
differences that are bigger than the error bound. They again lossy compress stored differences,
with an error bound of 0.1, using SZ, and they also keep track of the indices of the numbers
whose differences are more significant than the error threshold. The indices are then stored
as a bitmap, with a set bit indicating a difference outside the error bound and an unset bit
indicating a difference inside the error bound and the bitmap is then losslessly compressed with
bzip2. Furthermore, [Liu et al., 2021b] compare the findings to those of SZ and ZFP, where the
Autoencoder outperforms SZ up to four times and ZFP by up to fifty times in compression ratio
over the majority of the test dataset. The source code is available to everyone 1; The model,
however, only works with one-dimensional data. Furthermore, the conducted experiments are
based on small-scale scientific data (4.8MB), questioning their ability to perform on Big Data.

The authors of the SZ compression library present a modified version of SZ called AE-SZ
[Liu et al., 2021a], a Machine learning-based lossy compression algorithm. In this work, the
authors replace the linear regression predictor of SZ with a Sliced Wasserstein AE (SWAE)
[Kolouri et al., 2018]. First, the data is split into 2-dimensional or 3-dimensional blocks and
then fed to the SWAE, and the mean-Lorenzo predictor [Tao et al., 2017]. Both compression
methods are then applied to each block, and the data is compressed using the one with the
lowest L1 loss. The reason for using the mean-Lorenzo predictor is that it performs better
when compressing data with extremely narrow error bounds (1E-4) [Liu et al., 2021a]. The
authors claim that the AE-SZ has about 100% to 800% improvement in compression ratio with
the same PSNR achieved by SZ and ZFP. This is because the AE-SZ performs better with greater
error bounds, allowing for higher compression ratios, and the downside is that the AE-SZ
is 10%-40% slower than the SZ. The authors conclude that the block and latent space size in
the AE are critical for the compression ratio. Nonetheless, the latent space and block size are

1https://github.com/tobivcu/autoencoder
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dataset-dependent, implying that there is no generic network architecture that delivers the
best compression ratio for all climatic variables.

In [Pan et al., 2019], the proposed Autoencoder does not use convolutional layers but instead
uses fully linked layers to compress scientific data. The authors feeds chunks of data into the
Autoencoder, which flattens each chunk into a 1-dimensional vector and normalizes it. They
introduce an adaptive compression strategy that penalizes the usage of more important bits
than are required by establishing a custom loss function. The authors measure the effectiveness
of their approach by comparing the RMSE and PSNR achieved by other models.

[Saenz et al., 2018] shows the use of deep convolutional Autoencoders for nonlinear dimension-
ality reduction of climate data. The authors compare the Autoencoders’ reconstruction error to
that of principal component analysis (PCA). They analyze multiple convolutional Autoencoders
with varying parameters for encoding two temperature fields from pre-industrial climate model
simulation datasets. The results reveal that the Autoencoders outperform PCA, where the
reconstructed temperature fields maintain the large-scale aspects of global temperature trends
while filtering out the small-scale features. Noise in the Autoencoders convolutional filters
suggests that Autoencoder can be improved to provide better results. This article focuses on
only two temperature fields; however, a full compression analysis of all climatic variables is
still yet to be worked out.

Figure 4.1.: SZ [Liang et al., 2018]. Compression results of dark matter density field from
NYX data

[Rasp et al., 2020] present a benchmark dataset for data-driven weather forecasting. Further,
the authors evaluate the dataset by computing various baseline scores of different forecasting
models like linear regression, convolutional neural networks, integrated forecast systems
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etc. This paper focuses on weather forecasting and evaluates on only four different variables
given the size of the dataset in Gigabytes. However, evaluating other variables is still not yet
achieved.

SZ [Di and Cappello, 2016] is a lossy compression technique that approximates original data
using multiple curve-fitting models. The authors propose a novel high-performance computing
(HPC) method for compressing HPC data. This paper evaluates different scientific data domains
like climate simulation data, shock simulation data, particles simulation etc. There are three
main steps involved in SZ compression: array linearization, curve fitting, and unpredictable
data compression see Section 2.1.2. In addition, the improved version of SZ [Liang et al., 2018]
explores controlling data distortions when reducing the size of data by proposing adaptive
compression frameworks in different regions of the dataset. Although SZ evaluation includes
climate simulation data, this paper doesn’t involve compressing climate variables separately.
Figure 4.1 show that the latest version of SZ2.0 has higher resolutions than other.

Summary

In this chapter, we highlight the contributions from the already existing papers that are related
to our work and compare their implementation and findings. We describe the Autoencoder
methods used in solving the compression problem. We also briefly highlight the different
methods like SZ involved in solving the storage problem. Our work focuses on compressing
the climate data of 13 variables using different implementations of simple Autoencoders and
understanding the complications behind achieving high compression ratios.
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Chapter 5.

Evaluation

This chapter will briefly discuss the climate dataset, experimental setup and hardware utilised in
this work, training the Autoencoders, selecting the best performing architecture, and comparing it
with state-of-the-art lossy and lossless compression techniques. This chapter begins by outlining the
climate dataset in detail and the climate variables and levels present in each variable. Further, the
emphasis is on the GPU number of cores used in the experimental setup and followed by a detailed
description of the results obtained from training and testing of the Autoencoder architectures. Then,
a best performing Autoencoder architecture is compared with the lossy compression techniques like
SZ, ZFP and PCA in terms of compression ratio, SSIM and PSNR metrics. Further, the compression
ratio, compression and decompression time are compared between the lossless compression technique
like zstd, zlib and lz4 and the best performing Autoencoder architecture. Finally, this chapter
concludes with a detailed discussion of the evaluation findings.

5.1. Dataset

The employed dataset is from a benchmark data-driven weather forecasting “weatherbench”
dataset [Rasp et al., 2020]. The dataset is emanated from ERA5 (5th generation European
Centre for Medium-Range Weather Forecasts for the atmospheric reanalysis of the global
climate) [Hersbach et al., 2020]. The authors propose baseline scores and evaluation metrics
that enable the comparison of different Machine Learning models like simple linear regression
and other deep learning models.

The Reanalysis dataset guesses the atmospheric state by combining the forecast model with
the observations available at any point in time, and the raw data contains hourly forecasting of
the atmospheric state for 40 years from 1979 to 2018. The benchmark dataset contains three
resolution levels 5.625° (with 32×64 grid points), 2.8125° (with 64×128 grid points) and 1.40525°
(with 128×256 grid points). Since the dataset is large (each resolution level for the 40 years
time period amounts to 700 GB) and hardware constraints, the level 5.625°(32×64 grid points)
dataset has been employed in this thesis.

Further, the dataset contains 13 vertical levels: 50, 100, 150, 200, 250, 300, 400, 500, 600, 700,
850, 925, 1000 hPa. Instead of physical height, pressure in hecto-Pascals is used as vertical
height. For example, 1000hPa is termed as the pressure at sea level, and the pressure decreases
exponentially with the increase in height. Table 5.1 the detailed description of different variables
in the weather bench dataset, the first eight variables contain data collected at thirteen vertical
levels, and the last six variables have data collected at a single level.
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Variable name Description Unit Levels

geopotential (z)
Proportional to height of a pressure
level

[𝑚2𝑠−2] 13 levels

temperature (t) Temperature [𝐾] 13 levels
specific humidity (q) Mixing ratio of water vapor [kg kg-1] 13 levels
relative humidity (r) Humidity relative to saturation [%] 13 levels
u component of wind (u) Wind in x/longitude-direction [m s-1] 13 levels
v component of wind (v) Wind in y/latitude direction [m s-1] 13 levels
vorticity (vo) Relative horizontal vorticity [1 s-1] 13 levels
potential vorticity (pv) Potential vorticity [km2kg-1s-1] 13 levels

2m temperature (t2m)
Temperature 2m height above sur-
face

[𝐾] Single level

10m u component of wind
(u10)

Wind in x/longitude-direction 10m
height

[m s-1] Single level

10m v component of wind
(v10)

Wind in y/latitude-direction 10m
height

[m s-1] Single level

total cloud cover (tcc) Fractional cloud cover (0 − 1) Single level
total precipitation (tp) Hourly precipitation [𝑚] Single level
toa incident solar radiation
(tisr)

Accumulated hourly incident solar
radiation

[j m-2] Single level

Table 5.1.: List and description of variables in benchmark dataset
[Rasp et al., 2020]

5.2. Experiment setup and Hardware Used

The experiment setup was run on DKRZ (Deutsches Klimarechenzentrum) server. [DKRZ, 1987]
is a German climate and earth research centre which provides high-performance computing
platforms with high capacity data storage and management services for climate research in
Germany. DKRZ offers two High-Performance Computing (HPC) systems services such as
Mistral and Levante. Mistral was used in this work. Mistral being HLR-3(High-performance
Computing system for Earth system research), is the first petascale supercomputer at DKRZ.
It has a peak performance of 3.14 PetaFLOPS (1015 floating-point operations per second). It
consists of 3,300 compute nodes, 100,000 compute cores, 266 Terabytes of memory, and 54
Petabytes of disk space. DKRZ also provides software services like Jupyterhub by allowing
the execution of Jupiter notebooks on the Mistral HPC system with the user-defined session
configuration. Table 1 shows the configurations used for training Autoencoders and Variational
Autoencoders. The visualization/GPU node is used in this work because GPU accelerates
computational speed in neural networks [Chen et al., 2014] by parallelly executing the neuron
operations.

The Table 5.2 shows the user-configured hardware setup of the Mistral server used for Au-
toencoder and Variational Autoencoder architecture setup. Autoencoders required eight cores
and 64GB of main memory to capacitate ten years of climate data whereas the Variational
Autoencoder required 10 cores and 84GB of main memory for computing ten years of data.
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Architectures Node type Number of
cores Hostname Processors GPGPUs

Main
Mem-
ory

Autoendoer vis/gpgpu 8
mg[100-
111]

2x 12-core
Intel Xeon
E5-2680 v3
(Haswell)
@ 2.5GHz

2x Nvidia
Tesla
K80, each
with 2x
GK210GL

64 GB

Variational
Autoendoer

vis/gpgpu 12
mg[100-
111]

2x 12-core
Intel Xeon
E5-2680 v3
(Haswell)
@ 2.5GHz

2x Nvidia
Tesla
K80, each
with 2x
GK210GL

84 GB

Table 5.2.: Hardware used for Autencoder and Variational Autoencoder architectures.

5.3. Experiment Results

5.3.1. Train, Validation and Test data splits

In this work, from the available 40 years of data, training of the architectures was done with
ten years of data, i.e. from the year 1979 to 1989, and the predictions were made on data from
the years 2017 and 2018. The designed Autoencoder architectures are trained separately on
each climate data variable. Ten years of data for a single variable with thirteen levels mounted
to 1,253,616 (1.2 million) samples. The thirteen levels of data samples were further split into
training and validation sets of 80:20 ratio, i.e. 80% of the samples 1,002,892 (1 million) were
chosen for training, and the rest, 20% of the samples 250,724 were taken as a validation set.
Similarly, ten years of data for a variable with a single level scales to 96,425 samples and the
data was split into 77,145 training samples and 19,280 validation samples. Each variable was
trained, validated and tested separately on the designed architectures. Each variable was trained
for 15 epochs with a batch size of 1024. Below are the experimental results of each of the
architectures.

5.3.2. Five-Layered Autoencoder

As mentioned in the Section 3.2.1, the architecture is designed with five encoder layers, which
compress the input image and five decoder layers, which reconstruct the latent space into the
original image. The architecture was trained to minimise the reconstruction (Mean squared
error) loss in Equation (2.12). The total training time of a variable with 13 levels took approx-
imately 3 hrs 43 minutes, an epoch took around 14 minutes, and the total training time of a
variable with a single level took about 17 minutes 32 seconds, with each epoch taking around
70 seconds. With this architecture, the input image of size 8.3 kilobytes was compressed to 265
bytes with a compression ratio of 32.67:1.

Figure 5.1 shows the average reconstruction loss of each variable over 15 epochs. As the training
dataset is large in size (1 million data samples) and the batch size is 1024, the loss converges
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Figure 5.1.: Mean Square Error loss of 5-layer AE

quickly within a few epochs. Therefore, we see that the mean square loss for all the variables
is recorded close to zero in the first epoch.
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Figure 5.2.: Structural Similarity Index of 5-layer AE

Figure 5.2 is the Structural Similarity Index Measure(SSIM) of the five-layered architecture
calculated for each variable over the 15 epochs. As mentioned in Section 2.3.2, SSIM evaluates
the similarity in image quality of the reconstructed image based on the original image. SSIM
value 1 indicates that both the reconstructed and the original image are identical, and value
0 indicates that both the images are non-identical. The predicted geopotential and potential
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vorticity show high similarity, whereas the predicted total cloud cover shows less similarity.
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Figure 5.3.: Peak signal-to-noise ratio of 5-layer AE

Figure 5.3 is the Peak Signal-to-Noise Ratio (PSNR) of the five-layered architecture calculated
for each variable over the 15 epochs. As discussed in Section 2.3.3, PSNR is the measure of the
image quality based on the pixel difference between the reconstructed image and the original
image. PSNR is measured in logarithmic decibels. Higher the PSNR, the better the reconstructed
image quality. The predicted geopotential and potential vorticity show high PSNR, whereas
the predicted total cloud cover shows less.

Training Testing
Variables MSE SSIM PSNR MSE SSIM PSNR

Geopotential 2.691e-05 0.9908 46.092 3.243e-05 0.9902 45.543
total cloud cover 0.0879 0.2541 10.518 0.0948 0.2460 10.568

Table 5.3.: 5-Layered Autoencoder training and test metrics comparison

Table 5.3 represents loss, SSIM, and PSNR comparison between the two variables, which shows
different results for the same architecture. For example, variable geopotential shows high
structural similarity and high peak signal to noise ratio, whereas the variable total cloud cover
shows less similarity and less peak signal to noise.

Figure 5.4 shows the prediction comparison between the two variables using 5-layer Autoen-
coder. Figure 5.4a is the original geopotential image of timestamp 2018-01-01, and Figure 5.4b
is the predicted image that looks almost similar to the original image. Figure 5.4c is the original
cloud cover image of timestamp 2018-01-01, and Figure 5.4d is the predicted image. The reason
for the low prediction could be the input image being highly pixelated which hardly shows
any information.
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Figure 5.4.: 5-layer Autoencoder original and predicted image comparison

5.3.3. Six-Layered Autoencoder

As discussed in the previous Section 3.2.3, the architecture is designed with six encoder-decoder
layers. The aim behind this architecture is to achieve a higher compression ratio than the
5-layer Autoencoder architecture and compare the quality of the reconstructed image with the
loss metrics. The total training time of a variable containing 13 levels took approximately 3 hrs
48 minutes, an epoch took around 15minutes, and the total training time of a variable with a
single level took about 18 minutes, with each epoch taking 73 seconds. With this architecture,
the input image of size 8.3 kilobytes was compressed to 192 bytes with a compression ratio of
43.29:1.

Figure 5.5 shows the training reconstruction loss of each variable over 15 epochs. As discussed
above, mean square loss for all the variables is recorded closer to zero in the first epoch because
of 1 million training data samples.

Figure 5.6 is the Structural Similarity Index Measure(SSIM) of the six-layered architecture
calculated for each variable over the 15 epochs. Similar to the five-layered architecture the
predicted geopotential and potential vorticity show high similarity, whereas the predicted total
cloud cover shows less similarity.

Figure 5.7 is the Peak Signal-to-Noise Ratio (PSNR) of the six-layered architecture calculated
for each variable over the 15 epochs. Similar to the five-layered architecture the predicted
geopotential and potential vorticity show high PSNR, whereas the predicted total cloud cover
shows less PSNR.

Training Testing
Variables MSE SSIM PSNR MSE SSIM PSNR

Geopotential 2.897e-05 0.9903 46.263 3.3404e-05 0.9900 46.902
total cloud cover 0.0901 0.2460 10.463 0.0952 0.2912 10.12

Table 5.4.: 6-Layered Autoencoder training and test metrics comparison
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Figure 5.5.: Mean Square Error loss of 6-layer AE
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Figure 5.6.: Structural Similarity Index of 6-layer AE

Table 5.4 represents loss, SSIM, and PSNR comparison between the two variables, which shows
different results for the same architecture. For example, variable geopotential shows high
structural similarity and high peak signal to noise ratio, whereas the variable total cloud
cover shows less similarity and less peak signal to noise. When compared to the 5-layer
architecture, the 6-layered architecture has a high compression ratio but lacks in quality of the
predicted image. A detailed comparison between the architectures is made in the following
Section 5.4.1.
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Figure 5.7.: Peak signal-to-noise ratio of 6-layer AE
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Figure 5.8.: 6-layer Autoencoder original and predicted image comparison

Figure 5.8 shows the prediction comparison between the two variables using 6-layer Autoen-
coder. Figure 5.8a is the original geopotential image of timestamp 2018-01-01, and Figure 5.8b is
the predicted image that appears to have less quality when compared to the predicted image of
the 5-layer Autoencoder architecture because the 6-layer Autoencoder has a high compression
ratio when compared to the 5-layer Autoencoder. Figure 5.8c is the original cloud cover image
of timestamp 2018-01-01, and Figure 5.8d is the predicted image.
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5.3.4. Four-Layered Autoencoder

As discussed in the previous Section 3.2.2, the architecture is designed with four encoder-
decoder layers. The aim behind this architecture was to compare the five-layered and six-
layered Autoenoder architecture compression ratio and other loss metrics. The total training
time of a variable containing 13 levels took approximately 3 hrs 42 minutes, an epoch took
around 13minutes, and the total training time of a variable with a single level took about 17
minutes 10 seconds, with each epoch taking around 68 seconds. With this architecture, the
input image of size 8.3 kilobytes was compressed to 1.1 kilobytes with a compression ratio of
7.545:1.
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Figure 5.9.: Mean Square Error loss of 4-layer AE

Figure 5.9 shows the training reconstruction loss of each variable over 15 epochs. As discussed
above, the mean square loss for all the variables is recorded as lower than zero in the first
epoch because of 1 million training data samples.

Figure 5.10 is the Structural Similarity Index Measure(SSIM) of the five-layered architecture
calculated for each variable over the 15 epochs. Similar to the above two architectures, the
predicted geopotential and potential vorticity show high similarity, whereas the predicted total
cloud cover shows less similarity.

Figure 5.11 is the Peak Signal-to-Noise Ratio (PSNR) of the five-layered architecture calculated
for each variable over the 15 epochs. Similar to the above two architectures, the predicted
geopotential and potential vorticity show high PSNR, whereas the predicted total cloud cover
shows less PSNR.

Table 5.5 represents loss, SSIM, and PSNR comparison between the two variables, which shows
different results for the same architecture. For example, variable geopotential shows high
structural similarity and high peak signal to noise ratio, whereas the variable total cloud cover
shows less similarity and less peak signal to noise. When compared to the 5-layered and
6-layered architecture, the 4-layered architecture has a lower compression ratio but high in
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Figure 5.10.: Structural Similarity Index of 4-layer AE
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Figure 5.11.: Peak signal-to-noise ratio of 4-layer AE

quality of the predicted image. A detailed comparison between the architectures is made in the
following Section 5.4.1.

Figure 5.12 shows the prediction comparison between the two variables using 6-layer Autoen-
coder. Figure 5.12a is the original geopotential image of timestamp 2018-01-01, and Figure 5.12b
is the predicted image that shows high similarity to the original image when compared to the
5-layer and 6-layer architectures. Figure 5.12c is the original cloud cover image of timestamp
2018-01-01, and Figure 5.12d is the predicted image.
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Training Testing
Variables MSE SSIM PSNR MSE SSIM PSNR

Geopotential 3.041e-05 0.9912 44.532 4.067e-05 0.9996 43.0389
total cloud cover 0.0798 0.2869 10.987 0.0866 0.3427 10.622

Table 5.5.: 4-Layered Autoencoder training and test metrics comparison
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Figure 5.12.: 4-layer Autoencoder original and predicted image comparison

5.3.5. Variational Autoencoder

As discussed in the previous Section 3.2.4, the encoder creates a latent distribution of the
mean and variance of the input, and the decoder regenerates the original image from these
distributions. The total training time of 13 levels variable took approximately 6 hrs 20 minutes,
an epoch took around 26 minutes, and the total training time of a single level variable took about
30 minutes and 10 seconds, with each epoch taking around 2 minutes. With this architecture,
the input image of size 8.3 kilobytes was compressed to 196 bytes with a compression ratio of
43.29:1.

Figure 5.13 is the Variational Autoencoder loss calculated over 14 epochs. The VAE loss is the
combination of mean square loss and KL divergence.

Figure 5.14 is the Structural Similarity Index Measure(SSIM) of the five-layered architecture
calculated for each variable over the 15 epochs. Similar to the other Autoencoder architectures,
the predicted geopotential and potential vorticity show high similarity, whereas the predicted
total cloud cover shows less similarity.

Figure 5.15 is the Peak Signal-to-Noise Ratio (PSNR) of the five-layered architecture calculated
for each variable over the 15 epochs. Similar to the other Autoencoder architectures, the
predicted geopotential and potential vorticity show high PSNR, whereas the predicted total
cloud cover shows less PSNR.

Table 5.6 represents loss, SSIM, and PSNR comparison between the two variables, which
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Figure 5.13.: KL-Divergence + MSE of VAE
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Figure 5.14.: Structural Similarity Index of VAE

shows different results for the same architecture. Variable geopotential shows high structural
similarity and high peak signal to noise ratio, whereas the variable total cloud cover shows less
similarity and less peak signal to noise. When compared to the other Autoencoder architectures,
Variational Autoencoder has a high compression ratio but high quality of the predicted image.
A detailed comparison between the architectures is made in the following Section 5.4.1.

Figure 5.16 shows the prediction comparison between the two variables using a 6-layer Autoen-
coder. Figure 5.16a is the original geopotential image of timestamp 2018-01-01, and Figure 5.16b
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Figure 5.15.: Peak signal-to-noise ratio of VAE

Training Testing
Variables VAE loss SSIM PSNR VAE loss SSIM PSNR

Geopotential 6.074 0.9910 44.435 6.254 0.9996 42.401
total cloud cover 101.364 0.2621 10.6254 102.184 0.2916 10.178

Table 5.6.: Variational Autoencoder training and test metrics comparison
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Figure 5.16.: Variational Autoencoder original and predicted image comparison

is the predicted image that shows high similarity to the original image when compared to the
other Autoencoder architectures. Figure 5.16c is the original cloud cover image of timestamp
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2018-01-01, and Figure 5.16d is the predicted image.

5.4. Experiment Evaluation

In this section, we are going to discuss the comparison of different Autoencoder architecture
test results. We select the best performing architecture and compare the results with the other
state of the art lossy compression techniques. Further, we compare the architecture with the
state of the art lossless compression techniques.

5.4.1. Different Autoencoders Comparison

In order to identify the model with the best performance, the different models mentioned
in Chapter 3 were tested on the data from the year 2018 with a sample size of 1024, and we
compare the results of all the variables using a heatmap.
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Figure 5.17.: Structural Similarity Index Comparison of the variables across the implemented
Autoencoders

Figure 5.17 is a heatmap representation of the structural similarity index of the variables across
the Autoencoders architectures. Figure 5.17, shows the predicted variables 2m temperature,
Geopotential, potential vorticity, temperature, vorticity, toa incident solar radiation, and total
precipitation are more than 80% similar to the original images and the variables relative
humidity, 10m u component of wind, 10m v component of wind, total cloud cover, u component
of wind and v component of wind showed less similarity to the original images.

Figure 5.18 is a heatmap representation of the Peak signal to noise ratio of the variables across
the Autoencoder architectures. Similar to the structural similarity index, the predicted variables
2m temperature, Geopotential, potential vorticity, temperature, vorticity, toa incident solar
radiation, and total precipitation have more than 30db peak signal to noise ratio when compared
with the original images and the variables relative humidity, 10m u component of wind, 10m v

52



VAE 6LayerAE 5LayerAE 4layerAE

10m_u_component_of_wind

10m_v_component_of_wind

2m_temperature

Geopotential

Potential_Vorticity

Relative_Humidity

Temperature

U_component_of_wind

V_component_of_wind

Vorticity

toa_incident_solar_radiation

total_precipitation

total_cloud_cover

25.9775 22.0892 25.0341 27.2679

24.5215 23.6294 24.9501 26.0329

30.9371 30.2499 30.5256 31.6443

46.4354 44.2633 45.543 47.5326

47.8981 48.1386 48.506 48.8819

21.2522 14.6823 20.676 21.5313

34.247 33.5228 33.648 35.5581

29.175 28.1567 28.61 30.825

29.3431 27.5188 28.977 31.9385

41.1369 41.56 41.768 42.0354

42.5464 40.0586 48.506 39.4629

40.3935 40.3925 40.3939 40.3932

10.6255 10.4636 10.568 10.9875

15

20

25

30

35

40

45

PS
N

R
 ra

ng
e 

0 
- 5

0

Figure 5.18.: Peak signal to noise ratio comparison of the variables axross the implemented
Autoencoders

component of wind, total cloud cover, u component of wind and v component of wind show
less peak signal to noise ratio. Among the designed architectures, the Variational autoencoder
architecture showed identical results to that of the 4-layer architecture.

Figure 5.19.: Autoencoder architectures compression size comparison

Fig Figure 5.19 show the compressed size comparison between the designed architectures. The
original input image file is of size 8.3 kilobytes, and the 4-layer Autoencoder compresses the
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Architectures Compression Ratio
4-layer AE 7.545:1
5-layer AE 32.67:1
6-layer AE 43.29:1
VAE 43.29:1

Table 5.7.: Compression ratio of Autoencoder Architectures

original file to as low as 1.1 kilobytes. In contrast, 5-layer Autoencoder compresses up to 256
bytes, whereas the 6-layer and Varialtonal Autoencoder compresses the input file to 192 bytes.
Table 5.7 shows the compression ratio of the Autoencoders, wherein Variational Autoencoder
and the 6-layer Autoencoder show the highest compression ratio compared to the other two
architectures.

The Variational Autoencoder and 6-layer Autoencoder show higher compression ratios, but the
latter offers a low structural similarity index and low peak signal to noise ratio of the variables
compared to the VAE. On the other hand, the 4-layer Autoencoder shows a similar structural
similarity index and low peak signal to noise ratio as the Variational Autoencoder but a low
compression ratio. Therefore in this work, the Variation Autoencoder is chosen as the best
model, which compresses the original input to a smaller size with high quality. The second
best being 6-layer Autoencoder.

5.4.2. Comparing Autoencoders with Lossy compressors

This subsection compares the Variational Autoencoder with lossy compression techniques
like SZ [Di and Cappello, 2016], ZFP [Lindstrom, 2014] and PCA [Hotelling, 1933]. As men-
tioned in Section 2.1.2, SZ and ZFP are the two leading lossy compressor techniques for high-
performance computing (HPC) scientific data, which compress floating-point arrays into bytes,
and PCA in Section 2.2.1 is the compression technique which focuses on eliminating highly cor-
related dimensions in the dataset and retains the high variance dimensions. SZ is implemented
using the existing opensource libpressio GitHub library [Gok et al., 2019], which contains
python binding for the SZ compressor, ZFP was implemented using the zfpy python bindings
[Lindstrom et al., 2019], and PCA is implemented using sklearn library [Pedregosa et al., 2011],
which is the opensource machine learning library for python programming. The compression
was carried out on 10,000 data samples.

Figure 5.20 is a heatmap representation of the structural similarity index of the climate data
variables obtained from the designed Variational Autoencoder, PCA, SZ and ZFP lossy compres-
sors. Figure 5.20 shows state of the art lossy compressors SZ and ZFP show similar high SSIM
on all the variables, whereas PCA shows lower SSIM on variable toa incident solar radiation
and Variational Autoencoder shows above 80% similarity on the majority of the variables.

Figure 5.18 is a heatmap representation of the peak signal to noise ratio of the climate data
variables obtained from the designed Variational Autoencoder, PCA, SZ and ZFP lossy com-
pressors. Figure 5.18 shows that SZ outperforms Variational Autoencoder and PCA, whereas
ZFP falls closely behind SZ on all the variables.

Figure 5.22 shows the comparison of the original image with the reconstructed image using
lossy compression techniques.Figure 5.22a is the original image of variable ’Geopotential’,
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Figure 5.20.: Comparison of Structural Similarity Index of the variables with the lossy com-
pression techniques
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Figure 5.21.: Comparison of Peak signal to noise ratio of the variables with the lossy compres-
sion techniques

Figure 5.22b is the 5-layer Autoencoder reconstructed image shows smoothness in the re-
construction.Figure 5.22c is the VAE reconstructed image show better reconstruction results
than the 5-layer AE, Figure 5.22e SZ and Figure 5.22d ZFP reconstruct the original image
with minimal loss of information, whereas Figure 5.22f PCA shows additional noise in the
reconstruction, whereas the compression ratio of the Autoencoders is shown much higher than
PCA, ZFP and SZ.

55



(a) Original geopotential

0 10 20 30 40 50 60
0

10

20

30
5-Layer AE Predicted

(b) 5-Layer AE reconstructed Image

0 10 20 30 40 50 60
0

10

20

30
VAE Predicted

(c) VAE reconstructed Image (d) ZFP reconstructed Image

(e) SZ reconstructed Image (f) PCA reconstructed Image

Figure 5.22.: Lossy Compression techniques reconstructed image comparision

5.4.3. Comparing Autoencoders with Lossless compressors

This subsection compares the lossless compressor’s compression and decompression time of
the variables with the Variational Autoencoders. We used Zstd, Zlib and Lz4 compression
algorithms to compare the compression and decompression time.

Figure 5.23 shows the heatmap representation of the compression time of the lossless com-
pression techniques and the Variational Autoencoder. The heatmap shows that zstd and zlib
compress the climate data 11-17 times faster than the Variational Autoencoder, whereas lz4
compresses 10 times faster. The reason behind slow compression time is mainly because of the
Variational Autoencoder’s deep architecture.

Figure 5.24 shows the heatmap representation of the decompression time of the lossless com-
pression techniques and the Variational Autoencoder. Similar to the compression time, the
decompression time of Variational Autoencdoer is 10-17 times slower than the lossless tech-
niques due to its deep architecture and complex neural computations.
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Figure 5.23.: Compression time comparison between the lossless compression techniques and
the Variational Autoencoder

VAE Zstd Zlib Lz4

10m_u_component_of_wind

10m_v_component_of_wind

2m_temperature

Geopotential

Potential_Vorticity

Relative_Humidity

Temperature

U_component_of_wind

V_component_of_wind

Vorticity

toa_incident_solar_radiation

total_precipitation

total_cloud_cover

0.04 0.00082 0.00073 0.0019

0.04 0.00087 0.0007 0.0013

0.036 0.00068 0.00072 0.0011

0.039 0.00096 0.00084 0.0011

0.037 0.00076 0.00079 0.001

0.042 0.00081 0.00079 0.00096

0.043 0.00081 0.00082 0.00098

0.043 0.00093 0.00085 0.0011

0.038 0.00093 0.00099 0.0012

0.039 0.00084 0.00077 0.0012

0.045 0.00087 0.0007 0.0011

0.04 0.00088 0.00085 0.0011

0.042 0.0011 0.00099 0.0018

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

in
 s

ec
on

ds

Figure 5.24.: Decompression time comparison between the lossless compression techniques
and the Variational Autoencoder

5.4.4. Comparing Lossy and Lossless compression ratio

Figure 5.25 shows the compression ratio comparison between the lossy and lossless compres-
sion techniques. Variational Autoencoder showed a high compression ratio compared to the
other techniques, while PCA showed the second-highest compression ratio, and the lossy
compression techniques outperformed the lossless compression techniques in compression
ratio as expected.

The Autoencoders show a consistent compression ratio across the variables because the Au-
toencoders try to extract the features and learn the underlying patterns in the data. In contrast,
SZ and ZFP deal with compressing the floating-point arrays that vary across the variables, and
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PCA finds the high variance features that are contributing to the variable and reduces/removes
the highly correlated features. As the variance across the climate variables is not the same, the
compression ratio is inconsistent.
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Figure 5.25.: Image file compression between lossy and lossless techniques.

5.5. Discussion

The designed four Autoencoder architecture models were trained on the Weather bench
climate data. Since the chosen training sets of each climate variable are so huge (10 years of
data, approximately 1.1 million samples) that they contain all possible variability that could
be encountered in the application of the Autoencoder algorithm and the loss encountered
in the first epoch of all the designed architectures are less than zero for all the variables.
Validating the training set is equally important as it allows to see if identified parameters
for the training set refer to good general parameters. Therefore approximately 250,000 data
samples were set for the validation. To evaluate the correctness of the reconstructed images,
the metrics employed were structural similarity index metrics (SSIM), which evaluates the
similarity between the reconstructed image and the original image, and the peak signal to noise
ratio (PSNR) measures the image quality of the reconstructed image by comparing the noise
introduced in the reconstructed image by compression. The training starts with a loss of less
than zero and low SSIM and PSNR in the first epoch, but the metrics improve gradually over
15 epochs. This trend is evident in all the designed architectures and across all variables. The
trained architectures were tested on the latest available climate data (of the year 2018).

The designed architectures showed a high structural similarity(SSIM) of <80% and peak signal to
noise ratio(PSNR) of 35dB and above on variables like 2m temperature, Geopotential, potential
vorticity, temperature, vorticity, toa incident solar radiation, and total precipitation. The
moderate similarity of 40 % - 80% and PSNR in between 20db - 35dB on relative humidity, 10m
u component of wind, 10m v component of wind, u component of wind and v component of
wind but worse SSIM of 26% and 10dB PSNR on variable total cloud cover. This may be because
of the abnormalities of the input data. From the designed architecture, the 4-layer Autoencoder
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architecture and the Variational Autoencoders have shown identical results in SSIM and PSNR
metrics. However, the variational Autoencoder showed a high compression(43.29%) ratio
compared to the 4-layer architecture(7.545%) mainly because of the deep architecture design of
the Variational Autoencoder. The designed 6-layer Autoencoder showed a similar compression
ratio to that of the Variational Autoencoder but less SSIM and PSNR on the reconstructed
image. The simple Autoencoder generates compressed transformation deterministic values
in the latent space. The more layers of compression added to the architecture, the harder it
gets to reconstruct the input. Whereas the Variational Autoencoder learns the probabilistic
distribution of input in the form of mean and variance by forcing the distribution to be closer
to the normal distribution, this gives the Variational Autoencoder the generative capabilities.
Therefore the deep architecture of VAE shows a high compression ratio as well as preserves
substantial input information.

The Variational Autoencoder is further compared with the other lossy compression techniques
like SZ, ZFP and PCA. The VAE, PCA, SZ and ZFP showed similar SSIM results on the variables
like Geopotential, potential vorticity, vorticity, toa incident solar radiation, temperature and 2m
temperature. However, ZFP, SZ and PCA outperform the VAE on the other climate variables. In
contrast, Variational Autoencoder shows a very high compression ratio of 43.29:1 compared to
SZ, PCA and ZFP show approximately 3.5:1. Lastly, the Variational Autoencoder is compared
to the state of the art lossless compression techniques like Zstd, Zlib and Lz4. The lossless
compression techniques achieve 10-18 times faster compression and decompression time
compared to the Variational Autoencoder, whereas Variational Autoencoder outperforms
lossless methods to attain a high compression ratio.

As discussed above, the architecture trained on ten years of data (1979-1989) shows promising
results on the recent data(2018). This gives the Autoencoders an edge over the lossy and lossless
compression techniques. We save/preserve the trained model and use it for compression and
decompression whenever necessary, provided the climate does not vary drastically, unlike
the lossy and lossless techniques where simple compression and decompression are involved.
one of the major advantages of the Autoencoder architectures is consistency, where all the
variables are consistently compressed to a compression ratio per architecture. For example,
5-layer architecture compresses the variables with a consistent ratio of 32.67: 1, whereas the
lossy and lossless techniques compression ratio varies depending on the complexity of the
input data variable.

Summary

This chapter highlights the content and pattern of the dataset, emphasizing the hardware used
in the experiments. We learn the best performing architecture among the tested architectures.
However, we understand that the Autoencoders showed similar reconstruction results as SZ
and ZFP on variables like Geopotential, potential vorticity, etc. They showed low reconstruction
results on variables like relative humidity, 10m u component of wind etc., but they achieved
a high compression ratio when compared to SZ, ZFP and PCA. The lossless compression
techniques like zstd, zlib compress and decompress the climate data approximately 11-18 times
and lz4 10 times faster than that of the Autoencoders. Finally, a constructive discussion of all
of the comparative elements is conducted.
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Chapter 6.

Conclusion and Future work

This chapter concludes by giving a brief overview of the thesis, highlighting the evaluation pattern
along with the crucial findings and suggesting potential developments for future work.

6.0.1. Conclusion

This thesis implements different Autoencoder techniques to compress climate data and aims
to understand the challenges behind achieving a high compression ratio while maintaining
the originality of data when reconstructed. This work starts by introducing the topic and
the motivation behind it. Followed by a detailed description of compression and different
compression techniques along with a basic overview of Machine Learning and Deep Learning,
leading to Autoencoders and Variational Autoencoders.

Three different architectures of Autoencoders with varying hidden layers and a Variational
Autoencoder were designed and trained individually on 14 climatic variables from a benchmark
weather-bench dataset. The results show that the designed architectures performed signifi-
cantly well on the seven variables and not on the rest. The Variational Autoencoder and the
6-layer Autoencoder achieve a higher compression ratio of 43.29:1 where an input image of
8.3 kilobytes is compressed to 192 bytes outperforming the 4-layer and 5-layer Autoencoder,
having a compression ratio of 7.54:1 and 32.67:1 respectively. Whereas the 4-layer Autoencoder
shows a slightly higher structural similarity index and peak signal to noise ratio when com-
pared to the 5-layer and 6-layer Autoencoder but shows similar reconstruction results as the
Variational Autoencoder. This analysis shows that VAEs achieve an equal compression ratio as
6-layer architecture and perform similar to 4-layer architecture in the image reconstruction
mainly because of its generative capabilities. Therefore, VAE is considered the best performing
architecture.

The best performing architecture is then compared with state-of-the-art floating-point lossy
compression techniques like ZFP, SZ and PCA. The VAE outperformed the lossy methods in
achieving a high and constant compression ratio (43.29:1) among the variables. At the same
time, the structural similarity matrics of VAE showed similar results to that of lossy techniques
on six climate variables(Geopotential, potential vorticity, vorticity, toa incident solar radiation,
temperature and 2m temperature) and performed relatively poorly on the other variables. The
compression and decompression time of the VAE is compared with the lossless compression
techniques like Zstd, Zlib and Lz4, where the VAE algorithm performed 10-15 times slower
than the lossless algorithms.
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6.0.2. Future Work

Implementing architectures with different Encoder-Decoder designs with different regulariza-
tion techniques such as batch normalization and introducing dropout layers may improve the
reconstruction results for the variables that did not perform on the Autoencoder architectures.
Generative adversarial networks GANs in the form of Variational Autoencoders reconstructed
images with detailed quality for seven variables. Future work could include introducing other
GAN techniques in the decoder part to improve the reconstruction of low-performing variables.
Transfer learning could also be another potential future work where a model is trained on a
variable and tested on another.
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Appendix A.

Appendix

Variational Autoencoder Encoder code listing

1 latitude = 32

2 longitude = 64

3 latent_space_dim = 16

4 input_img = layers.Input(shape=(latitude , longitude , 1),

↩→ name="encoder_input")

5 x = layers.Conv2D (256, (3, 3), activation='relu',

↩→ padding='same',name="encoder_1")(input_img)

6 x = layers.MaxPooling2D ((2, 2),

↩→ padding='same',name="MaxPooling_1")(x)

7 x = layers.Conv2D (128, (3, 3), activation='relu',

↩→ padding='same',name="encoder_2")(x)

8 x = layers.MaxPooling2D ((2, 2),

↩→ padding='same',name="MaxPooling_2")(x)

9 x = layers.Conv2D (64, (3, 3), activation='relu',

↩→ padding='same',name="encoder_3")(x)

10 x = layers.MaxPooling2D ((2, 2),

↩→ padding='same',name="MaxPooling_3")(x)

11 x = layers.Conv2D (32, (3, 3), activation='relu',

↩→ padding='same',name="encoder_4")(x)

12 x = layers.MaxPooling2D ((2, 2),

↩→ padding='same',name="MaxPooling_4")(x)

13 x = layers.Conv2D (16, (3, 3), activation='relu',

↩→ padding='same',name="encoder_5")(x)

14 x = layers.MaxPooling2D ((2, 2),

↩→ padding='same',name="MaxPooling_5")(x)

15 shape_before_flatten = tf.keras.backend.int_shape(x)[1:]

16 x = layers.Flatten ()(x)

17 encoder = layers.Dense (8)(x)

18

19 #sampling layer for extracting input distributions

20 def sampling(mu_log_variance):

21 mu, log_variance = mu_log_variance

22 epsilon = tf.keras.backend.random_normal(

↩→ shape=tf.keras.backend.shape(mu), mean =0.0, stddev =1.0)
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23 random_sample = mu + tf.keras.backend.exp(log_variance /2) *

↩→ epsilon

24 return random_sample

25

26 encoder_mu = layers.Dense(units=latent_space_dim ,

↩→ name="encoder_mu")(encoder)

27 encoder_log_variance = layers.Dense(units=latent_space_dim ,

↩→ name="encoder_log_variance")(encoder)

28 latent_encoding = layers.Lambda(sampling ,

↩→ name="encoder_output")([encoder_mu , encoder_log_variance ])

29

30 #creating an encoder model

31 encoder_model = Model(input_img , latent_encoding ,

↩→ name="encoder_model")

32 encoder_model.summary ()

Listing A.1: VAE Encoder Architecture

Variational Autoencoder Decoder code listing

1 decoder_input = layers.Input(shape=( latent_space_dim),

↩→ name="decoder_input")

2 x = layers.Dense(units=np.prod(shape_before_flatten),

↩→ name="decoder_dense_1")(decoder_input)

3 x = layers.Reshape(target_shape=shape_before_flatten ,

↩→ name="reshape")(x)

4 x = layers.Conv2D (16, (3, 3), activation='relu', padding='same',

↩→ name="decoder_2")(x)

5 x = layers.UpSampling2D ((2, 2), name="UpSampling_2")(x)

6 x = layers.Conv2D (32, (3, 3), activation='relu', padding='same',

↩→ name="decoder_3")(x)

7 x = layers.UpSampling2D ((2, 2), name="UpSampling_3")(x)

8 x = layers.Conv2D (64, (3, 3), activation='relu', padding='same',

↩→ name="decoder_4")(x)

9 x = layers.UpSampling2D ((2, 2), name="UpSampling_4")(x)

10 x = layers.Conv2D (128, (3, 3), activation='relu', padding='same',

↩→ name="decoder_5")(x)

11 x = layers.UpSampling2D ((2, 2), name="UpSampling_5")(x)

12 x = layers.Conv2D (256, (3, 3), activation='relu', padding='same',

↩→ name="decoder_6")(x)

13 x = layers.UpSampling2D ((2, 2), name="UpSampling_6")(x)

14 decoder_output = layers.Conv2D(1, (3, 3), activation='sigmoid ',

↩→ padding='same',name="decoder_output")(x)

15

16 decoder_model = Model(decoder_input , decoder_output ,

↩→ name="decoder_model")

17 decoder_model.summary ()

Listing A.2: VAE Decoder Architecture
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