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Abstract

A growing variety of storage media and technologies focus on hierarchical storage manage-
ment and lead to more complex storage layouts. This work aims to develop a mechanism to
implement HSM policies in JULEA to provide a streamlined framework that supports this type
of research. JULEA is a storage framework for distributed systems, e.g. high-performance com-
puting (HPC) systems. Implementing a modular mechanism to write high-level HSM policies
enables extended object management on storage hierarchies, creating an effective environ-
ment for research.

For constructing the HSM policy interface, different promising ideas for HSM are analyzed.
Based on this interface, the integration in JULEA is designed and implemented. To evaluate
the performance various use cases and benchmarks were run with different simple policies,
like LRU, and compared against JULEA without hierachy storage management (HSM).

The qualitative analysis shows that the HSM mechanism reduces the overall performance for
single tier scenarios up to 20%, due to additional metadata handling and function calls. How-
ever, comparing different policies shows that the performance of the lower storage tier can be
completely hidden. In conclusion, the implemented mechanism works as intended but should
be revisited to minimize the performance impact. In addition, when using HSM, the applica-
tion characteristics should be analyzed and used as the basis for selecting and parameterizing
the policy.
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Chapter 1.

Introduction

A growing variety of storage media and technologies focuses on hierarchical storage manage-
ment and leads to more complex storage layouts. To support further research in this area, this
work wants to provide a streamlined research framework by developing a mechanism to im-
plement HSM policies in JULEA, a research framework for data access on HPC systems. By im-
plementing a modular mechanism for writing high-level HSM policies, JULEA’s applicability
will be expanded to manage objects on storages hierarchies, creating an effective environment
for research.

In this chapter a brief introduction is given. First, the motivation and goal of the thesis will be
discussed. Afterward, the general structure will be explained.

1.1. Motivation

Modern HPC (high performance computing) systems contain a vast amount of different stor-
age and memory modules!(Oukid & Lersch, 2018). They all are mainly different in design but
are typically compared by their latency, bandwidth, and capacity. In contrast, the determining
factor for limited capacity is mostly the cost?. Also, latency and bandwidth typically have a
weak correlation, which allows ordering the different technologies in a hierarchy as seen in
figure 1.1. Noticeable is the difference in access time between a build-in and external cache,
and between memory and storage, which is 5ns to 100ns and 100ns to 100us, respectively. This
gap between storage and memory is, compared with pre-SSD times, relatively small. New tech-
nologies like Intel’s Knight Landing an NVRAM?, which introduce even more layers into that
hierarchy, closes this gap further.

The prices of different storage technologies are different in multiple orders of magnitude and
their energy consumption (Borba et al., 2020; Jiang et al., 2021; Katal et al., 2022). This is not
only important for monetary value but also with rising interest and focus on green computing
(Hariri et al., 2019; Krish et al., 2016).

Different researches and experiences have shown that better storage does not always result
in significantly faster execution(Guerra et al., 2012; Krish et al., 2016; Meng et al., 2014). For
workflows requiring large sequential reads, a PFS (parallel file system) with high bandwidth

'In this thesis, the term memory is used for volatile medium (like DDR or SRAM) and storage for persistent
(like HDD or tape).

With cost typical, the cost per byte is referenced

*Non-Volatile random access memory = persistent memory (see fig. 1.1)
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Figure 1.1.: Latency pyramid based on “Developers Embrace Intel”(Rudoff, 2019)

disks may be all that is needed to provide the required data throughput. A typical example
for tiered storage is the addition of LFS (linear file system) to traditional HDD disks. In this
scenario archived data are stored on durable, cheap, but slow tapes.

CPU caches are the fastest layer in the storage hierarchy. These layers are needed to provide
the CPU with instructions on a cycle base, amongst others. However, the built-in CPU caches
are SRAM with a high transistor count and high production cost (Oukid & Lersch, 2018), which
leads to only small caches being implemented. Because accessing these cache levels takes only
a few clock cycles (“How L1 and L2 CPU Caches Work”, 2022), the CPU contains a hardware-
implemented caching algorithm to manage the access (Wong, 2013). Furthermore, it is there-
fore not accessible for software-controlled HSM. On the other hand, LFS has access cycles that
can last days because of the mechanical parts, e.g., retrieving the cartridges and loading them
into the drive.

To leverage the hardware, data distribution on the different tiers is vital. It would be most
sensible for a system with an SSD and high bandwidth HDD to put small data to the SSD. Since
access to small data is often random access, they will leverage the small latency of the SSD.
In contrast, large data access is typical bandwidth capped. Therefore, the difference between
HDD and SSD is minimal (Dong et al., 2016; Zhang et al., 2015). In addition, having large
objects on the cheaper medium is also economical.

The optimal usage of this hierarchy is an open research question (see sec. 3). However, different
from cache layer management it is possible to implement more sophisticated software, because
of the long access times. These software systems are called HSM.

JULEA is a storage framework for researching and teaching. It provides a modular structure to
support rapid prototyping and testing new approaches for parallel and distributed file systems
(Kuhn, 2017). Therefore JULEA uses a client-server approach and supports multiple storage
servers with different backend types like key-value stores(KV-stores) for metadata storage or
object-stores for large data segments (see fig. 1.2).

Currently, a single JULEA server can only leverage a storage hierarchy by placing different
stores on different levels/tiers (see fig. 2.2). To implement HSM approaches with JULEA, it
would be necessary to instantiate multiple server with an object store each and place much
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Simplification of (Duwe & Kuhn, 2021, fig. 4).

logic on top for accessing the data. This overhead contradicts the demand for a modular and
easy-to-use framework for prototyping, research, and teaching.

1.2. Goal

The goal is to introduce a mechanism in JULEA to integrate different HSM policies. The poli-
cies should be modular as is JULEA and allow the implementation of a wide variety of policies
without reducing the overall performance. A HSM policy is a set of rules that defines when
objects are moved between different storage media/tiers. An example policy typically used
for CPU caches is the least recently used (LRU) policy. As the name implies, the concept is to
demote the least used objects to make room for promotion. Its simplest implementation will
promote accessed objects and demote the longest unused objects in exchange.

In this context, the HSM policies will only be implemented for the object backend because the
metadata/KV-storage should be used for small information snippets. Small data pieces will
lead to many small, mostly random access, and therefore a high tier of storage, like an SSD, is
in every case preferable (Duwe & Kuhn, 2021; Iliadis et al., 2015; Zhang et al., 2015).

1.3. Structure

The next chapter (sec. 2) explains central concepts important for the reasoning in the later
sections. At first, two topics are about modern storage (sec. 2.1) and then an insight how
JULEA manages objects and object backends (sec. 2.2). The storage topics summarize currently
available tiers and a digression of why a larger SSD is not the solution for every problem.



Next is an overview of current research about HSM on HPC (sec. 3), how they approach this
problem, and the trials they propose. This insight will be used to give directions for possible
policies used by JULEA and also to design the policy mechanism in a way so that this approach
can be implemented.

Chapter 4 is about the design and implementation of this mechanism. First, the design will be
explained started by what the fundamental goals are to archive based on the preliminary find-
ings (sec. 4.1). Based on these goals, the encapsulation of the policy will be described, followed
by a listing of different components and how they interact to provide certain functionality.

After that (sec. 4.2), the implementation will be presented. First is the policy infrastructure
with the policy’s actors and sensors. Last but not least, a peek at how the policy can process
the data without slowing down JULEA is taken.

The implementation will then be evaluated (sec. 5). At first, the used hardware and environ-
ment will be documented (sec. 5.2). The benchmarks will test different policies (sec. 5.3) im-
plemented with the new mechanism in different scenarios. It will also be measured how large
the performance gap between a proxy policy and JULEA without the policy mechanism is. In
the last chapter (sec. 6), the insights will be summarized, and directions for further research
and work will be proposed.
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Chapter 2.

Background

This chapter introduces fundamental concepts important for decisions in this thesis. The first
part is about storage properties. Therefore, it first lists currently available storage/memory
types and their usage. Then the problem of access contention is elaborated, showing why
simple caching is not a solution in every case. Lastly, an in-depth explanation of JULEAs
object management follows, which serves as a basis for design decisions later on.

2.1. Modern Memory Concerns

The relationship with storage has shifted in the last decades. In 1995 one concern was that
a computer might not support threading and therefore should sequential network communi-
cation (Schmidt, 1995). Nowadays, even consumer CPUs have 16 cores. As mentioned by
Perarnau et al., dedicated migration threads can boost performance because all threads cannot
possibly be delivered with enough bandwidth (Perarnau et al., 2016). However, this also means
that more resources are available, reducing the bottleneck through memory management.

Also, new storage and memory technologies have increased, as shown in figure 2.1, which
closed the large performance gap between RAM and disk storage. This opens new possibilities
and asks for a more detailed evaluation of different module types for different use cases.

Near
emo Memor
e.g., DRAM e.g,stack memory
Memory

e.g, DRAM
Il |:| Far Memory ‘
I/O Performance ¢.&.Intel XPoint
Gap

Burst Buffere'g_, SSD

Parallel File System e.g., disks Parallel File Systeme. g, disks

Figure 2.1.: Traditional vs. modern storage hierarchy (Dong et al., 2016, fig. 1). Higher tiers
have less capacity but lower latency and higher bandwidth.
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2.1.1. Deep Storage Hierarchy

The current systems provide a variety of different memory and storage tiers. The description
tier is used because typical storage media have either higher latency or lower bandwidth. Nev-
ertheless, lower tiers become attractive because of cost per bit, energy consumption, storage
density, or persistence, as demonstrated in figure 1.1. (Oukid & Lersch, 2018)

Typical, the fastest tier is the in-processor SRAM (static random access memory). This memory
is volatile and is commonly known as L1-3! cache. Because of its fast access rate 2, this type
of cache is directly built in the CPU and managed with hard-wired algorithms (Wong, 2013)
and therefore not of interest for most HSM works.

The next tier is the DRAM (dynamic access memory). In contrast to SRAM, it is simpler in
construction but needs to be refreshed frequently. The rapid refresh cycle results in higher
energy consumption and a limit for storage density. DRAM exists in different specifications
with different parameters, Intel’s Knight Landing series experimented with a “near”- and “far”-
memory. Traditional DRAM, “far-memory,” is therefore paired with multi channel DRAM
(MCDRAM), “near-memory”. As shown by Peranau et al., it improves the total processing
time in combination with data migration cores (Perarnau et al., 2016).

NVRAM is the newest tier. It is slightly slower than DRAM but is non-volatile and can achieve
much higher storage densities (Kang et al., 2009; Oukid & Lersch, 2018). Especially database
applications can profit from this since querying requires many broad spared memory accesses
(Lehner, 2017).

The subsequent tiers are long-term storage. The SSD is the fastest among them. Because of
the construction, it allows for fast random access compared to an HDD. However, because
of higher energy consumption and the lower price per byte of HDDs, the SSD is still not the
primary storage medium for HPC (Oukid & Lersch, 2018). Especially for large sequential reads,
a good striped PFS with HDDs can archive similar performance to SSDs (Koo et al., 2017).

Last but not least, there is tape storage or LFS. Tape is primarily self-contained storage, because
of the mechanic procedure to change the tape in the reader and because of its linear nature
has a high latency. Therefore, it is mainly used to archive data, as shown in Koltisdas et al.
(Koltsidas et al., 2015). Tape is a very durable and high-density storage medium, but because
of its high latency not suitable for storing data in a workflow.

As this overview shows, there are currently many different tiers which different properties
and use cases. It also shows that dedicated HSM can leverage multiple storage tiers more
than the standard caching approach and that processing power is not the limiting factor for
data-intensive workflows.

2.1.2. Access Contention

An intuitive assumption is that if all frequently accessed data fit in a higher tier, it is a good
idea to do so. Nevertheless, as shown by Zhang et al. and Perarnau et al.,, the differences in

111, 1.2, L3, and sometimes L4 cache.
20On CPU caches have typical access times of a view cycles to a low three-digit number of cycles fig. 1.1,
(“How L1 and L2 CPU Caches Work”, 2022).
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performance between the different tiers are not necessarily high enough to hold this assump-
tion (Perarnau et al., 2016; Zhang et al., 2015). Too much parallel access to the same SSD, for
example, can lead to an access contention which means that the controller cannot handle the
request simultaneously and therefore introduces a latency for queued requests (see sec. 5.2).
Also, a more extensive sequential operation may block multiple channels of the SSD, which
can also lead to more latency for other requests or reduced bandwidth.

Therefore, an HSM policy simply putting everything as efficiently as possible at the highest
tier is not the best. Iliadis et al. is presenting an approach to factor workload of different tiers in
when dividing data around them (Iliadis et al., 2015). It presents an offline method to calculate
the distribution because it is NP-hard.

Another way to reduce access contention is, as shown by Zhang et al., to use processing power
for complex HSM since the workflow can not use the full processing capabilities because of the
limited data throughput (Zhang et al., 2015). In these scenarios, fewer calculation resources
can improve the throughput or overall runtime.

2.2. Object Management in JULEA

JULEA is a storage framework that focuses on flexibility to allow research on different parts of
storage management without writing a whole system or producing complex code that is not
reusable. Therefore it is composed of modules, which provide each a unified interface used to,
for example, implement a custom object backend.

An object backend is a library for storing larger data objects. JULEA distinguishes, like many
HPC storage systems, between metadata and object data. Furthermore, JULEA allows writing
small snippets of data directly to the metadata or dedicated DB nodes. For KV and DB back-
ends, the memory access is vastly different from object backends. Because of the random and
small memory accesses, KV-stores and DB can leverage an SSD in nearly every situation.

Each JULEA server currently supports up to one object backend, as seen in figure 2.2. There-
fore, to experiment with HSM, a new object backend must be implemented with integrated
HSM. An alternative solution would be to have the client communicate with multiple servers,
one per storage tier, and manage the data. This would be a client-controlled HSM and is gener-
ally not desirable (Devarajan et al., 2020). Implementing a new backend is coupled with many
boilerplates and is not transferable for a different backend setups. Therefore JULEA wants
to use multiple object stores in one server as pictured in figure 2.2, which will need a HSM
module on place the objects to different tiers.

The general structure of the backend interface, seen in the listing 2.1, is a scope that will
open/close. This entry check ensures that when another operation is executed, the neces-
sary rights are provided, and potential serialization steps will happen on a block level, which
reduces the chance of an error occurring.

Object backends are managed with modules. Modules are a mechanism to load libraries at
runtime. This, in combination with a naming convention, allows modules to be compiled
separately and loaded at program start. Also, the module can easily be changed in the config-
uration file* without recompiling.

*https://github.com/julea-io/julea/blob/master/doc/configuration.md
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Figure 2.2.: “Different storage components on corresponding hardware layers: [...] JULEA’s
design makes it possible to easily separate data and metadata and handle it dif-
ferently. In the current setup, the SQLite database is held in main memory while
MariaDB and the object store reside on HDDs [(left)]. The proposed extension will
extend JULEA’s support for storage hierarchies to be able to make full use of new
technologies such as NVRAM. This will also allow us to put parts of the object
store onto SSDs for fast access, while the majority can be kept on HDDs (right).”

(Duwe & Kuhn, 2021, fig. 6)

Besides init and fini methods, all functions are of interest for a policy because they inform
about interaction with objects and storage. As shown by Meng et al., the combination of dif-
ferent hint types increases the hit ratio for higher tiers (Meng et al., 2014). The policy’s access
propagation should be as detailed as possible to allow for a wide range of hinting functions.

The scope spanned with open and close allows for an excellent point to introduce a barrier to
coordinate data access from clients and access from the policy for migration purposes. This
barrier reduces the chance of implementing race conditions.
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Listing 2.1 JULEA module definition for an object backend (jbackend.h).
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struct {

// instantiate new object backend

gboolean (*backend_init)(gchar const, gpointerx);
// deconstruct object backend

void (xbackend_fini)(struct JBackend*);

// create a new object in this backend and open it

ghoolean (xbackend_create)(struct JBackendx, gchar const*, gchar constx,
o~ gpointerx);

// open a object, may also create it.

ghoolean (xbackend_open)(struct JBackendx, gchar const*, gchar constx,

o~ gpointerx);

// delete object and associated data, object must be open
ghoolean (xbackend_delete)(struct JBackend*, gpointer);
// closes a object

ghoolean (xbackend_close)(struct JBackend*, gpointer);

// Gain properties of object, currently total size and last accessed time,
// data may be outdated if executed "write" without sync" or "close".
ghoolean (xbackend_status)(struct JBackend*, gpointer, gint64x, guint6i4x);
// Forces data transfer to storage and metadata updater

// without closing object.

ghoolean (xbackend_sync)(struct JBackend*, gpointer);

// Reads part (offset + size) of object from memory to backend,

ghoolean (xbackend_read)(struct JBackendx, gpointer, gpointer, guint6é4,

o guint64, guint6s4x);

// Writes part (offset + size) of object from memory to backend,

// extends object if needed.

ghoolean (xbackend_write)(struct JBackend*, gpointer, gconstpointer, guint6é,

o guint64, guint6s4x);

// Returns a iterator to iterate though every entry at this backend.
ghoolean (xbackend_get_all)(struct JBackend*, gchar const*, gpointerx);
// Returns a iterator to iterate though every entry in this backend

// with a specified prefix.

ghoolean (xbackend_get_by_prefix)(struct JBackendx, gchar constx, gchar
-~ constx, gpointerx);

// Increments a entry iterator and return the next entry name.

gboolean (xbackend_iterate)(struct JBackend*, gpointer, gchar constx*x);
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Chapter 3.

Related Work

This section will look at different approaches using deep storage hierarchies effectively with
an offline and online algorithm. This insight will be used to design the HSM policy mechanism
for JULEA in a way that would allow implementing this approach as a policy module and use
it within JULEA.

3.1. H-Fetch (Devarajan et al., 2020)

With caches and RAM, tiered storage and caching have existed for a long time in computer
science. What data should be held in faster memory is also thought about a lot. A common con-
clusion is that loading the data before it is needed! will improve the performance (Devarajan
et al., 2020; Ghoshal & Ramakrishnan, 2021; Perarnau et al., 2016). This is why stride detection
is already implemented on a CPU level. Nevertheless, with a growing depth of storage hierar-
chies, the question is not only what to cache but also in which layer. As shown by Devarajan
et al., the typical solution does not answer the question of where to prefetch (Devarajan et al.,
2020).

Another problematic point is that most solutions use a client-pull approach. This means that
prefetching is application-oriented and will not coordinate global access. The missing coor-
dination may lead to redundant data or unwanted eviction. A server-push approach would
analyze global access patterns and provide the data accordingly.

Furthermore, this work emphasizes the importance that the HSM is:

Hierarchy aware The manager should keep a global view and access to the storage tiers.
This allows reduced data movement on intermediate tiers.

Application agnostic The manager should be decoupled from running applications and there-
fore be allowed to fetch data blocks that are not currently accessed.

Their H-Fetch HSM keeps track of file accesses similar to the access types used by JULEAs
object backend. These hints are used to create a heat map for the data segments. Further, they
found that the frequency of the data placement influences access performance. Therefore,
high placement frequency will lead to short read times, but higher latencies cause the data
migration to block access to data, as seen in figure 3.1.

'This mechanism is called prefetching.
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Figure 3.1.: Benchmark for high/medium/low frequent placement of data by HSM for data in-
tensive (w1), balanced (w2) and computation intensive (w3) workflows, as adapted
from (Devarajan et al., 2020, fig. 3(b))

3.2. Data Elevator (Dong et al., 2016)

Besides complex optimized solutions, if the focus on writing data, even simple policies can in-
crease the performance significantly in deep storage hierarchies. The Data Elevator presented
by Dong et al. is an example of a simple but effective tool (Dong et al., 2016).

The Data Elevator is a mechanism for more efficient usage of burst buffer (BB). They show
that if the PFS nodes directly read data from the BB contention it will lead to poor performance
of the BB. With the Data Elevator, a dedicated process will read memory chunks of the BB to
its his local memory, allowing for better throughput utilization, and then place them on the
slow tier. The intermediate transfer to the memory blocks the BB less than transferring the
data directly to the slow storage and leads to end-to-end-time boost of up to 35% (Dong et al.,
2016, ch. 7). Data will then be stored from the process to the PFS without slowly fighting for
priority on the BB. It should be mentioned that they use BB accessed via the network, which
allows other nodes to do this migration task.

This works shows that if the specification is well known for a workflow, simple HSM can
increase the performance for real-world examples up to 6 times (Dong et al., 2016, ch. 5). It also
emphasizes using dedicated data-mover to increase performance, especially for data-intensive
workflows.

3.3. Adaptive Storage (Koo et al., 2017)

Splitting data between multiple disks is a familiar concept and implemented from RAIDS to
modern PFS. Striping allows for faster reading since if two segments are on different disks, they
can be read with the combined bandwidth of these disks. Even a sequential read can profit
from this because multiple segments can be read in parallel because the network throughput
from the computation nodes is much higher then from disk storage.

18



Koo et al. has compared the fixed striped PFS Lustre with a progressive file layout (PFL) build
into it (Koo et al., 2017). The idea is that the first small part of each object would be stored
on a different disk, and the remaining data would be striped over the remaining disks. The
consequence will be that small files are completely stored on a disk, while larger files are
distributed across multiple storage devices to leverage parallel access.

This approach already resulted in higher total throughput because small file accesses will not
be compete with efficient large reads for large I/O-operations (see fig. 3.2). If an SSD is used to
store the small I/O-fragments, the throughput for these fragments is significantly higher since
the random access performance of SSDs is better than that of HDDs (see fig. 3.2a).

Another important observation is that selecting the correct size for small files has a mas-
sive impact on performance. Setting the size too large will drop the performance for small
I/O-operations and increase the contention, which consequently also reduces the large I/O-
operation throughput too (see fig. 3.2b).

This leads to the observation that SSD is best leveraged with random access and that mixed I/O-
scenarios can significantly improve system throughput. Furthermore, this shows that object
sizes are an imported factor for efficient HSM and should be considered.
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(a) small file I/O-throughput (b) large file I/O-throughput

Figure 3.2.: Compare PFS with fixed striping across 4 HDDs (Lustre) / with PFL storing 4MB
on dedicated HDD and striping remaining data across 3 HDDs (PFL(HDD)) / with
PFL similar properties then PFL(HDD) expect using an SSD for the first 4MB for
mixed I/O workloads with large (16GB) files and small files with 2MB/4MB/8MB
in case 1/2/3 respective (adapted from (Koo et al., 2017, fig. 8/9)).

3.4. Manage Workflows with HSM (Ghoshal &
Ramakrishnan, 2021)

Another approach to address HSM to focus on workflows. It is common to run multiple appli-
cations instead of just one, which are interrelated and where each contributes different data.
This is also the case when “manual tiering” is executed. Therefore data needed for the work-
load are stored in advance on higher tiers, and data with less access are explicitly stored on
lower tiers.
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This process is not only tedious, but it is also error-prone because of changing architecture
and high effort to adapt. While there are already many tools that analyze applications and
their dependencies and run them accordingly, there are only a few which also consider data
migration.

Ghoshal & Ramakrishanan proposed a workflow management that, besides orchestrating ap-
plications, moves data asynchronously to maximize the available tier utilization (Ghoshal &
Ramakrishnan, 2021). Their approach extends existing workflows with additional data-mover
tasks (see fig. 3.3). These additional tasks allow, for example, moving data to the archive while
it is still being written to use high throughput to minimize waiting time for the application and
then free fast memory while the application is calculating. Because the workflow is calculated
offline, it can simulate different approaches and select the best.

They concluded that a data-centric managed workflow performs the same tasks with less over-
all memory consumption because data can be stored earlier and deleted accordingly. Also,
data can be persistent while the application is still running without human interaction and
overhead.

Storage
Hierarchy

Workflow

Scratch

MaDaTS

Virtual Data Space (VDS) : .
1
1

..
Data Tasks( | ypg Coordinator “ Long-Term
»

Storage

Extended Workflow

Archive

Figure 3.3.: “Users map workflows and data to a virtual data space (VDS) and a VDS coordinator
manages the data during workflow execution on tiered storage systems.” (Ghoshal
& Ramakrishnan, 2021, fig. 1)
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Chapter 4.

Design and Implementation

This chapter is about the design and implementation of extending JULEA to run HSM policies
on an object backend server. The first section outlines the structure and reasoning behind
the design. The second section discusses actual implementation with C in the current JULEA
source code.

4.1. Design

An abstraction of a policy is needed to implement and test different HSM-policies in JULEA and
keep the modularity. Since JULEA is already an established codebase, the design concepts will
be inherited, avoiding confusion. Furthermore, it allows more straightforward modifications
later.

JULEA is designed object-oriented. These objects are commonly accessible via functions like
in GLib (“GLib-2.0", 2022). JULEA uses GModules to avoid recompiling if modules, like the
object backend, are changed, swapped, or reconfigured. Modules are a mechanism from GLib
to load and use libraries at runtime. That way, only the module/library needs to be recompiled
when changes are made.

The following section covers the design goals to be achieve with this implementation and
outlines how the policy module needs to be constructed to fulfill these requirements. The last
section will discuss the integration in the current JULEA object management ecosystem (see
sec. 4.1.3).

4.1.1. Design Goals

The following goals were set to create an extension that will be used in the future.

Minimally invasive The modifications to the current code should be minimal to avoid in-
troducing errors. Further, it should not complicate or interfere with future planned
extensions.

Convenience The usage of this extension should be as convenient as possible to allow for
faster and easier implementation of policies. A more convenient usage will also reduce
the turnover time for new ideas.
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Flexible As shown in chapter 3, there are many different approaches for implementing HSM
policies depending on the environment and use case. The policy-interface must offer a
high degree of freedom of its operations to support a wide range of policies.

Minimal Overhead The mechanism should introduce no relevant latency for data access if
not used or if the policy ignores the corresponding action. A small overhead is essential
because the latencies on newer tiers will become smaller, and the performance should
not be dumped from this extension.

Parameterized Policies A simple mechanism should exist to provide parameters for the pol-
icy. Parametrization allows easier testing and adaptation without modifying source code
or recompiling.

Configurable via JULEA ’s Configuration As extension to minimal invasive, the policy’s
selection and configuration/parametrization should be made with the existing configu-
ration file. That allows for a more straightforward configuration since all information
is contained in one file.

Reuse as much as possible Existing JULEA functionality should be used to avoid duplicated
systems which are a common error source when the system evolves (Carzaniga et al.,
2015). It also reduces the amount of code needed and therefore increases the maintain-
ability.

Transparency Different policy strategies need different data, as shown in chapter 3. Most of
that data is related to memory/storage access. The policy should receive all data related
to storage access to leverage the available data as much as possible.

Dedicated Computation Resources Data throughput is a massive bottleneck for scientific
workflows (Chen et al., 2016). Therefore dedicated data-mover processes can reduce the
total computation time. Chapter 3 showed that a variety of HSM approaches require
dedicated computation resources to be performed efficiently.

Outside Communication Channel An information flow from other applications to the pol-
icy should be present. This communication channel can, for example, be used to imple-
ment application and data workflows manager (Ghoshal & Ramakrishnan, 2021) or allow
the user to specify their data placement directly (e.g., by namespace). It would be pos-
sible to integrate them directly into the policy. However, against the background that
JULEA already has a communication protocol, it would introduce duplicated systems
that would work against the goals reuse as much as possible and convenience. Therefore
the existing messaging system of JULEA should be expanded to allow sending messages
to the policy.

4.1.2. Policy Module

In JULEA, modules are typically used in the following way: The module provides a _info®
function. This function instantiate an object which implements the appropriate interface. This
interface contains in general an initialization/constructor (_init) and finalization/destructor
(_fini) function to manage the object (see lst. 2.1). This general structure will be adapted for
the HSM policy module interface.

'E.g. backend_info for backend modules
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Initialization For the initialization of the policy, a reference to JBackendStack gets passed,
which is later used to issue migrations. In addition, the policy can access the object storage to
write and store data, read other objects or fetch the size of objects. That will allow a flexible
and convenient way to get additional information about objects and modify them.

Hints Most decisions of HSM are based on hints. These hints are created from data access
operations. The policy should decide what kind of hints it wants to collect to provide flexibility.
For deriving hints the policy get signals via process_access (see listing 4.1 line 90). Because the
function allows ignoring the kind of access, they are convenient to use. Moreover, with the data
segment containing data depending on the access type?, it offers transparency. To reduce the
overhead for data accesses, the policy should keep the hinting function as slim as possible. The
object creation process is a special case handled with process_creation instead of process_
access. This is necessary because to provide more flexibility the policy must map a new object
directly to a storage tier. In a simple implementation, this may be a function that returns a
fixed value or a more demanding task for scenarios with a low object creation frequency.

Processing Processing should be offloaded to a dedicated process. The function process
passes the resources to the policy (see listing 4.1 line 99). This function will then be called
from a dedicated thread to ensure processing time for the policy. This process then can migrate
objects between different tiers in an asynchronous manner.

Parametrization An argument list passed from the config file to the policy offers a simple
and convenient way to parametrize the policy, which results in easily modifiable and highly
flexible usage. If the policy uses instructions to move data, they arguments may contain a
path to the movement instructions. Since the policy is able to read from the object storage,
the instructions and configuration could also be read from this.

Communication Nevertheless, creating objects just for a one-time read is much overhead
and may pollute the object storage namespace. To avoid this, process_message provides a
way to communicate with the policy (see listing 4.1 line 111). A message is composed of a
string decoding the message type and a data segment of fixed length. The type string may be
omitted but will, if used, provide information to create better readable logs.

2For process_read this are the offset and size of the read
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Listing 4.1 Interface for policy module (jbackendstack.h)
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typedef struct
{
gboolean (xinit)(gpointerx this, const JListx args, JBackendStackx*
<~ backendStack);
ghoolean (*fini)(gpointer this);
/// short processing period to handle data
ghoolean (*process_access)(gpointer this,
const gcharx namespace,
const gcharx path,
guint obj_id, ///< [in] object index, used for
» easier recognise same object
guint tier, ///< [in] tier where object
» 1s currently on
JObjectBackendAccessTypes access,
gconstpointer data);
/// long processing period for migration and large calculation
/*% \retval FALSE on error */
gboolean (*process)(gpointer this);
/// short processing period to match new object to a storage tier
/*% \retval FALSE on error
* \sa j_backend_stack_get_tiers */
gboolean (*process_create)(gpointer this,
const gchar* namespace,
const gcharx path,
guint obj_id, ///< [in] continious object
o~ index
guint* storageTier ///< [out] storage tier ID
» to store new object
)i
/// process policy custom message
/*% \retval FALSE on error */
ghoolean (*process_message)(gpointer this,
const gchar* type, ///< [in] message type
» encoded as 0-terminated string

gpointer data, ///< [in,out] optional
- message data
guint length ///< [in] size of data
~ field
)i

gpointer data;
} JObjectBackendPolicy;
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4.1.3. Functionality

Currently, the JULEA server directly accesses the object backend. JULEA is already able to
instantiate more than one object backend. That allows instantiating an object backend for
each tier, which reuses existing functionality and reduces error sources.

Managing multiple object backends needs a new structure. Instead of directly accessing the
one object backend, the required backend will now be requested from the JBackendStack.
This invades only minimal in existing backend code and provides, in addition, a convenient
access.

Access control The core functionality of a HSM is the migration of data between tiers.
While the same object can exist on two tiers simultaneously, it would be complicated to gen-
eralize the complex access management. For that reason, HSM are strategies that do focus on
reading, writing or explicitly renounce duplicated data (see sec. 3). To keep the first imple-
mentation simpler, it will also refuse duplicated objects.

It is necessary to block object access for that process to prevent race conditions or data corrup-
tion during migration. That could be archived by using a mutex for each object, which ensures
only one operation at a time. The open/close structure of JULEAs object management is suit-
able to insert this mutex.

It is essential to notice that an object backend may support parallel accesses, for example, par-
allel writing nonoverlapping parts. Suppose a mutex around each access would not leverage
these capabilities because it would block concurrent access. A read-write-mutex can be used
to avoid this issue. This kind of mutex can differentiate between two accesses types. Read
access can be parallel, whereas write access requires exclusive access. In this case, the read
case would be the object access via normal access operations, and the write case the migration
from one tier to another.

To track this mutex, JBackendStack has similar to JObjectBackend, a pair of begin/end func-
tions for requesting the corresponding backend. Since the access in JULEAs object backend
is object-based, the read-write-mutex locking is simply integrated into the scope (see fig. 4.2).
Therefore, the begin function will provide the backend/tier that contains the requested object
and acquire a read-lock on them. This ensures no migration will happen while still allowing
for concurrent access.

Metadata For an efficient mapping between object and tier, a KV-store would be ideal.
While JULEA already provides a meta-data server with a KV-store, this server might be at
a different node and only accessible via the network. That could introduce high latencies,
which contradict the goal to minimize the overhead on a frequent task like querying an ob-
jects tier. Also, this would invade/pollute the meta-data namespace, which leads to implicit
requirements.

On the other hand, using a hash-table, would introduce a new dependency, reduce the flex-
ibility and might lead to race conditions. A compromise between the above two options is
to instantiates a local KV-store that is only used from the JBackendStack as pictured in fig-
ure 4.1. This solution minimizes latencies, avoids namespace pollution, stores the data, and
enables quick changes to the KV-store.

25



JObjectStack

+init(config, backends)

+fini()

+create(key, out scoped_backend)
+begin(key, out backend out object)
+end(object)

-locks

RWSpinlock

-read_access_count: int
-willWrite: bool
* -generation: int

+read_lock(out generation)
+write_lock()
+read_unlock()
+write_unlock()

+policyMessage(type, data, len) -obj2backend KVStore
+getTiers(out tiers: Tier, out length) >
+migrate(key, destinationTier) +out(k | < JKVBackend
+getTier(key): int put(key, value)
9 +rm(key)
+get(key, out value)
JPolicy
-backends -data
+init(args: String, backends)
1.7 ) +fini()
-policy | +process_access(key, obj_id, tier, type: AccessType, data)
JScopedObjectBackend +process_create(namepace,_path, out tier)
- +process_message(type: String, data, data_length)
«enumeration» +process()
<> ' AccessType
WRITE
READ
DELETE
SYNC
. STATUS Tier
+tier
+size
+latency: progressive
Scope +bandwith: progressive
+scope
+obj_id
_orginal +namespace
orgina +path
JObjectBackend

+init(type: const char*)

+fini()

+create(namespace, path, out object)
+open(namespace, path, out object)
+status(object, out modification, out size)
+sync(object)

+read(object, out read)

+write(object, write)
+get_all(namespace, out itr)
+get_by_prefix(namenpace, prefix, out itr)
+close(object)

+delete(object)

Figure 4.1.: Class diagram for policy module integration. Blue classes already exist in JULEA.
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sd object access )
Loop Stack: Obj2Backend:
JObjectStack KVStore

alt object exists )

[Yes] begin(...) o get(.) > 5
—U object info? VU
[No] | create(key, out scoped_backend) _ |
""""""""""""" RWMutex:
«create» RWSpinlock

put(...)

read_lock(...)

ScopedBackend:  [¢-iioee i
i| JScopedObjectBackend «create»i
backend

optnormal backend usage)

| réf )hijacked opérations|

end(...) > i‘ read_unlock(...)

u‘ «destroy»
X

Figure 4.2.: Diagram for accessing object backend through JBackendStack, referenced dia-
gram is figure 4.3

sd hijacked operations)

User ScopedBackend: Backend: Policy:

JScopedObjectBackend JObjectBackend JPolicy
alt access operation )

[read] read(object, out read) J‘ process_access(READ, (offset,% length))) ‘
: ‘ read(object, out read) 1‘ —U
[write] write(object, write) i‘ process_access((WRITE, (offsét, length))) ‘

write(object, write)

7

[sync] sync(object) > 5‘ process_access(SYNC) -
sync(object) g —u

| _ _1 L]
[status] status(object) ».  process access(STATE) | N
status(object) L —U

Figure 4.3.: Hijacking scheme for signaling backend operations to Policy.
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Abstraction On significant problem that remains is how to issue a process_access call for
object access while only minimally altering the backend handling. The solution is inheritance.
If the JBackend functions to track relevant access are overwritten, the server code would be
unchanged. To archive, this JScopedObjectBackend is a child of JBackend. Besides the over-
written access functions, this also stores the object key of the currently accessed object to
provide it as needed (see fig. 4.1). This over-writing of access functions allows unchanged
backend code and the convenience to add new backend functions without altering the policy
mechanism. If new functions are added to a backend that is not directly related to access,
there is no need to modify policies-related code since that functions will be inherited. The
relevant operations are propagated to the backend as displayed in figure 4.3.

An alternative solution could be to introduce a new function for each access type, which calls
the intended backend function and the corresponding policy function. However, this method
would results in many changes. Every new backend function would have to be implemented in
the JBackendStack, which would define the same method multiple times and prolong rotation
times Any other solution would interfere even more with the existing design and codebase.

Backend iteration The iteration capability of JULEAs object backend allows iterating over
all objects stored on an object server while filtering by namespace. Iterating over all objects
can be achieved by iterating over each tier since there are no order constraints. Migrating
objects during an iteration is problematic because an object could be visited multiple times.
However, this iteration only returns the object paths, which are stored as in the local KV-store.
An iteration over all objects is the same as an iteration over the keys in the KV-store since
JULEAs KV interface already has the same iteration functionality. This way;, it offers a simple
and efficient iterator.

An alternative would be to block all migrations for the iteration duration. This solution would
keep the changes less invasive since it would only introduce a new scope (migration lock).
Nevertheless, this would disable the HSM while iterating. Therefore the iteration via the KV-
store is chosen. It is more invasive but circumvents possible latency at operation start if a
migration is already running and will not clog the policy execution.

Remaining structures To cover the remaining parts displayed in figure 4.1. Scope is meta-
data associated with an object access scope, namely the namespace, path, and ojbect_id. The
object_id can identify objects more conveniently. Since the index is dense, it can be used
to index an array that contains data related to the corresponding object instead of creating a
string lookup based on namespace and path.

Tier isa collection of data describing a tier because there is no way in JULEA currently to fetch
the metadata of an object backend. These arguments must be provided via the configuration
file. An alternative is to pass custom metrics via the parameter list directly. The decision to
introduce this data object is based on the assumption that bandwidth, latency, and capacity
are standard parameters to describe storage and may be available through JULEA someday
(Lehner, 2017). Moreover, it creates a better readable configuration file and is an entry point
for later universal tier-related data.

It was also considered to measure access timing and deduce tier properties. The problem here
was that a sophisticated approach will introduce latencies, and the naive approach needs data
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and non-data access to calculate these values. In that case, the data would also not be available
from the start, which leads to a new list of problems.

Last is the AccessType described in section 4.1.2. It is used to differentiate access types without
implementing different functions. Policies can use data detailed as they need and access types
of interest.

4.2. Implementation

In the previous section, the design was explained. However, further details need to be specified
to implement the HSM-mechanism. This section presents the remaining considerations and
their chosen solutions. First, in a top-down manner the integration of the JBackendStack
and infusion of JScopedBackend in the current JULEA codebase is explained. Afterward, the
implementation of the policy execution loop is discussed, followed by the challenges of the
migration process.

4.2.1. Integration with Current Object Backend

To enable integration with the current object backend changes in the configuration process
are necessary to allow the use of more then one object backend. Since GKeygFile files support
argument lists that can be used to pass more than one backend. This will reduce mandatory
modifications without invalidating old ones (see Ist. 4.2). In addition, capacity, latency, and
bandwidth can be configured for each tier. These parameters are optional and can be omitted
to avoid incompatibility. The chosen encoding is a suffix representation? to keep the configu-
ration files human-readable.

Listing 4.2 Current JULEA configuration for object backend (left), vs definition of multiple
object backends in new version (right).

[object]
backend=posix
component=server
path=/tmp/object/

backend=posix;posix
component=server
path=/tmp/object;/mnt/fast
capacity=100MB;500MB
latency=50us;20ms

I
I
|
I
I
| bandwidth=1GB;200MB

In addition, a new configuration section for the policy is also needed to extend the existing
object backend configuration. The name of this section is object.hsm-policy to highlight
that this policy is a HSM policy for the object backend (e.g. Ist. 4.3). It contains the policy
module identifier (policy), similar to [object].backend. The configuration for the utilized
local KV-backend is based on the [kv] configuration section. A list of arguments (args) is
used to initialize the policy as described in section 4.1.2.

*g_key_file_get_boolean\double\integer\string_list to parse a ; separated list(“GLib.KeyFile.Get_
string_list”, 2022).
*Like 1GB for 1 Gigabyte or 1ps for one micro second

29



Listing 4.3 New configuration group for policy.

[object.hsm-policy]
kv_backend=1leveldb
kv_path=/tmp/julea-1000/obkv
policy=1lru

args=200;5

JConfiguration needs to be extended to these new fields. For the arguments list and list
of backends/paths, the GLib build in g_key_file_get_string_list is used. This returns an
array of strings, which will be converted to a JList of strings to avoid having a new list type in
the server code section. The tier attributes will be stored as uint64_t for easier handling later
on. The conversion between the “human-readable format” and absolute format will happen
in a new function in j_helper. A new anonymous substructure in JConfiguration is also
created, storing the different parameters as strings to reflect the new configuration group.

Next is the integration into the server code. Currently, the object backend is stored as a pointer
in jd_object_backend and loaded with j_backend_load_server. To keep changes minimal
jd_object_backend is changed to jd_object_backends an accepts a JList of JBackend. This
list will then be populated with j_backedn_load_servers, which will replace its former sin-
gular version. With this, the initialization code from the server is nearly untouched but now
able to work with multiple backends.

The next decision is the placement of JBackendStack. It could be declared in server.c as
the previous backend but this would violates the object orientation paradigm. Since it is only
neededin loop.c, to handle incoming messages, JBackendStack should be managed in loop.c.
However, since there are currently no other resources in loop.c that need to be construct-
ed/destructed, a init/fini function pair is needed. The only function currently in loop.c
is jd_handle_message, the added initialize and finalize are called jd_handle_init and jd_
handle_fini.

The last step is to replace each usage of jd_object_backend with a scoped access to the back-
end corresponding to the current object as seen in figure 4.2. Which is as simple as putting a
j_backend_stack_begin or j_backedn_stack_create before each j_backend_open/create
and a j_backend_stack_end after the last operation.

To support iterating over all objects the object backend iteration functions is also implemented
in JBackendStack and named j_backend_stack_get_all, j_backend_stack_get_prefix and
j_backend_stack_iterate. Their implementation then uses the KV-backend iteration mecha-
nism to iterate over the entries in the JBackendStack internal KV-store as described in section
4.1.3.

4.2.2. JBackendStack

C is a language with a long history but without convenient features. Therefore JScoped-
ObjectBackend can not inherit from Backend. Nevertheless, C defines that the order of mem-
ber declarations is reflected in their memory layout. Furthermore, no unnamed padding is
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allowed before the first member (Secretary, 1999)°. If JScopedObjectBackend has a JBackend
as the first member, then the memory layout of the first sizeof( JBackend ) bytes would be
the same as for JBackend. As result can the address of a JScopedObjectBackend be interpreted
and used as a pointer to JBackend.

To redirect the object backend access calls, the function pointer of the JBackend part will
change to call a function that executes the backend access and sends a signal to the policy. A
copy of the original JBackend is kept to store the original functions. This way, all j_backend_
object calls will be redirected to the corresponding policy functions, which can call the ini-
tially intended function because they reference an unchanged JBackend. All object access calls
cascade as shown in figure 4.4.

The implementation of JBackendStack requires a slight change in the existing object back-
end interface. All access functions of the object backend take a pointer to a slice of memory
allocated by their init function.Therefore it is impossible to append their data without ex-
tensive code changes. A less invasive solution is to alter the signature of the object backend
functions to take a JBackend pointer instead. This way the backend function can access their
data via JBackend.data, while the remaining code can work on JBackend and its extensions
JScopedObjectBackend.

Because the JScopedObjectBackend contains object-specific data, each scope must create a
new one and clean it after end. This is not ideal, but the growing efficiency of malloc (Durner
et al., 2019) is not a concern at this early stage. Since each client can only have one access at
the time, it would be sensible to allocate space once a new client connects to the server and
reuses this space. Each time, the space would still be filled with the backend meta data for the
corresponding tier, but copying a few hundred bytes has a smaller impact allocating additional
memory. Nevertheless, to implement this, the client connection process must be reconstructed
by either giving each client a unique ID or adding the possibility for client scoped memory, or
alternative solution. However, solving this issue is out of scope for this work.

4.2.3. Policy Communication and Execution Loop

Processing As discussed earlier, in section 3, the execution of the HSM should run in a
separate thread to allow asynchronous data movement. The function process is used to hand
these resources to the policy. This function will be called from a dedicated thread and minimize
interference with client handling. As shown in figure 3.1, continuously running the data-
mover dose not create optimal results. Instead, using a separate function can provide different
waiting schemes for the policy data-mover. The gain of directly implementing these schemes
in JULEA would be that the policy code would get simpler and, therefore, easier and faster to
write. In addition, it is much easier to terminating the program in a defined state.

Possible simple policies for executing the data-mover are a flat delay between data-mover runs,
or running it after a fixed amount of hints/object accesses (Dong et al., 2016). Currently, neither
of them is implemented. However, to allow an easy implementation in the future, resource
handling is already constructed that way.

SSee section 6.7.2.1 paragraph 13
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sd object access full J
User JBackend: Stack: Obj2Backend: Policy:
JObjectBackend| | JObjectStack KVStore JPolicy
altnew object / create(key, out scoped_backend) «creafey
(read_lock =1)
[Yes] Lock:
process_create(key, out tier) ﬂ RWSpinlock
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et(key, out value
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Figure 4.4.: Detailed sequence diagram for accessing a JULEA object backends via JBackend-
Stack, for referenced diagram see figure 4.3.
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The process function will be called in a loop until JULEA receives a SIGKILL or shuts down
for other reasons. As results it is a requirement of process to return regularly to allow termi-
nation.

Object access handling Besides processing resources, a policy also needs information
to make decisions. The first data fragment can be received via the optional [object.hsm-
policy].args configuration as a list of strings. This is an easy way to pass parameters to the
policy without concerns that the configuration name used by the policy may also be used by
JULEA.

The next and most important type of data is the access notification. If object access is issued,
the time to process this access should be minimal to reduce latency. Because JULEA has one
thread per client, processing in that thread will potentially delay a follow-up request. The
conclusion is that the functions process_access and process_create, which interfere with
regular data access, should be fast as possible. Especially process_access is only intended to
produce light-weight hints.

process_create hasa unique role, because in contrast to process_access, its results are used
to determine on which tier to store the new object. Also, it will properly set up data for later
tracking inside the policy.

Hints managing A structure that allows collecting hints asynchronously and pressing them
in a separate thread would be an async-queue, for example, GAsyncQueue. Then each process_
access could push a message to that queue, and in process, this queue would be read. Example
usage of that can be found in the LRU-policy described in section 5.3.

As seen in figure 4.3 for each object access, the policy hinting function is first called before
executing the corresponding backend function. This is done to maximize the processing time
of the data mover with the new knowledge. Because process runs on a separate thread, this
order should have no impact on the duration of the object access. Since data access is a rela-
tively slow process, the data mover can perform in the meantime tasks like clearing space for
the object, which should be promoted.

Messages The final communication channel to the policy is by sending a direct message. A
message consists of a string-type descriptor and a blob. The string type descriptor is chosen to
allow easier debugging and motivate a more human-readable data exchange. This direct chan-
nel can be used, for example, to manually promote objects or, like proposed from Ghoshal &
Ramakrishnan, to execute a pre-calculated migration or prefetching issued from the workflow
manager (Ghoshal & Ramakrishnan, 2021).

It should be mentioned that the policy also has access to JBackendStack and, therefore can
create/read/write/status/delete objects. Besides the status fetch to check the size of objects,
data modification is not in scope for a typical HSM. However, this option is provided to offer
more flexibility and an easy way to store policy data.

Lastly there exists no mechanism to inform the policy that a shutdown will happen. For storing
data on shutdown, which is often necessary to properly function after a restart, the only place
is the fini function. At this point, only the functionality of the private KV-store is available.
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4.2.4. Handling Migration

sd Migration J
Policy: Stack: Obj2Backend: Mutex: Source: Destination:
JPolicy JObjectStack KVStore RWSpinlock | | JObjectBackend| JObjectBackend
migrate(key, destinationTier) get(key, out value) 1

location, lock, generation L
write lock()

generation &

optgeneration <> generation )
get(key, out value)

L

location
status(key) _
object size U
) create(key) =U
loopobject size / chunk size + 1
chunk = read(objéect, out read) _
write(chunk) J =U

delete(object) .
put(generation+1) 1

write_unlock()

7 —LF increment generation

Figure 4.5.: Migration process between two object backends via the JObjectStack

Mapping objects to tiers is the main purpose of a HSM. Besides setting the initial storage tier
with process_create, a mechanism is needed to move data between tiers. This mechanism
is used with migrate, figure 4.5 gives an outline of how it works. Important to note is that if
a migration is running, this process has exclusive usage to avoid invalid access. It would be
possible to still allow state and read access, but it would introduce more complexity since the
linked backend would then be changed in a scoped operation. If migration is running, there
is no data access to keep things simple and functional.

Access control A read-write lock is used to guard the objects to ensure exclusive usage on
migration while still allowing shared usage for read and write operations. It would be handy
to use the GReadwriteMutex, but GLib does not specify in which order queued read and write
locks are served (“GLib.RWLock”, 2022). The priority of migration access is important since the
object accesses may overlap for data with high demand, and therefore the object is never free
to migrate. However, if the migration access has priority, it may briefly delay access while the
migration is running, but all following access benefits from the faster tier. The simple read-
write spinlock presented by Fuerst is implemented to have a well-defined behavior (Fuerst,
2018).

First, this read-write spinlock implementation grants that no more shared access is permitted
if exclusive access is queued. This could potentially lead to significant latencies but prevents
starvation of the migration. This design was chosen, because scenarios with many shared and
few exclusive migration accesses are common where hot data is migrated. For these kinds of
scenarios the performance of this simple lock is similar or better to more complex locks (Fuerst,
2018). Secondly a simple implementation leaves less room for error, and finally, implementing
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a read-write lock with mutex would use semaphores not provided by GLib and would lead to
a even more complex implementation.

Migration The process of migration (see fig. 4.5) contains acquiring the exclusive access,
creating a new object at the destination, and then copying the data in chunks from the source
tier. After the transfer is finished, the original object will be deleted, the generation of the
object increased, and the new metadata is stored in the local KV-store. The last step then is to
release the lock.

A generation count is used to recognize outdated data. An object entry contains a generation
count and a reference to a read-write spinlock. Acquiring a lock yields a generation. If the
generation matches the entry currently stored, the entry is still up to date. If the lock yields a
different generation, the new entry must be fetched from the KV-store. This mechanism allows
reducing KV-accesses. Otherwise the KV-store would have to be accessed before requesting
the lock, in order to find the matching lock, and again after the lock is granted to ensure that
the data is up-to-date. Since an entry only stores the data placement, not the data itself, only
migrations can change the validity of an entry. Therefore, if no exclusive lock was in place
when a read lock request was processed, there is no need to fetch the entry from the KV-store
again.

At its core, migration is a straightforward process, involving guarding shared storage. The
problem is that migration will change the object’s last accessed information. It is generally
undesirable to modify objects on migration. However, since JULEA’s object backend interface
does not provide a way to modify object metadata, this can only be solved by storing access
data while migrating in the KV-store and hijacking the status request to inject the correct
data.
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Chapter 5.

Evaluation

In this chapter the new HSM mechanism is evaluated. It will be analyzed how high the sys-
tem’s overhead is and if simple policies can result in plausible timings. Based on this function-
ality of the interface and the effort to write the policies is evaluated. First, different use cases
and tiering scenarios will be described. Then, the hardware is used to execute the benchmark
and the policies. Finally, the benchmark results will be presented and interpreted.

Different policies will be tested under various scenarios to confirm the general functionality
of the HSM module. Three dimensions are chosen to construct these scenarios for a compre-
hensive functionality test — the use case, the available tiers, and the policy used.

5.1. Benchmark Scenarios

The selected uses cases are first, a partial equation solver (partdiff) which writes the current
state as checkpoint and second, an Enzo test case as a scientific application example. “Enzo is
a community-developed adaptive mesh refinement simulation code, designed for rich, multi-
physics hydrodynamic astrophysical calculations” (“The Enzo Project”, 2022). Moreover, it
uses JULEA via the HDF5 interface. In addition, a constructed read script is used, which will
read checkpoints from partdiff since no out-of-the-box JULEA compatible application to test
read properties was found. This script will read checkpoints and calculate the sum of the main
diagonal to simulate a data-heavy workload. The data is fetched in two phases: the metadata
(e.g. matrix size), and the matrix data. Furthermore, to provide a behavior that allows caching,
these two phases are executed in batches of ten, including ten metadata reads, ten matrix reads
with calculations, etc.

For further insight into performance behavior, the julea_benchmarks are also used. This se-
ries of micro-benchmarks is set around creating and deleting empty objects to measure man-
agement performance. The other set is to check reading or writing of many small objects. A
detailed list of this benchmark can be found in the project’s source code!.

The scenarios are constructed out of 2 tiers to keep the policies simple. At first, the two tiers
are the local SSD and the network PFS (CephFS) to simulate a local BB setup. The local SSD is
also the fast tier in the second scenario. The slow tier is an artificial slow drive with latencies
of 50ms created with SlowPokeFS (SPES). This slow drive constructs a scenario where the
second tier is strictly worse. In contrast, PFS and SSD each have their advantages, especially
with high network performance.

https://github.com/julea-io/julea/blob/master/benchmark/object/object.c
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There is also a scenario with only one tier for each type of memory used to classify these
values. This will allow determining the performance gain of the different policies used.

5.2. Hardware/Cluster

The tests and benchmarks were run on two nodes of a computer cluster, one as the server the
other as the client. This separation was done to ensure that other I/O-output from the client
applications would influence the server object backend as little as possible. The nodes are
identically constructed as follow:

CPU: 1x AMD Epyc 7443 2.85GHz 24 Cores

RAM: 128GB

Network: 100GB-Ethernet

Local NVMeSSD: 256GB

SlowPokeFS: FUSE onlocal NVMeSSD which introduces a delay to each I/O-operation (Schoen-
makers, 2013, April 8/2021).

Network storage: CephFS on 10 storage nodes. Each equipped with multiple NVMeSSDs,
typically four INTEL SSDPE2KX040T8 (P4510) 4TB.

38 MiB -

29 MiB - 858 MiB -
®
—
5 .
E— 19 MiB - 572 MiB -
(@]
=]
o
= 10 MiB - 286 MiB -

0iB- 0iB- L
CephFS SPFS SSD CephFS SPFS SSD

scenario | 4k x1 [ eakx16 [ 1g x1

Figure 5.1.: Performance tests on storage media used as a reference in further evaluation tested
with random read-write access in different scenarios. There are sixteen streams
with 64kB accesses, one stream with 4kB accesses, and one stream with 1GB ac-
cesses. As intended, has SPFS (SlowPokeFS) performed the worst, especially for
small accesses.

All applications and servers ran exclusively on an individual node to provide results with low
variance. To set expectations, first, the I/O-capabilities were tested. Therefore the latency and
the throughput for different access patterns on each storage were measured in addition to the
network bandwidth between these two nodes.

38



1.00- 50- —_——

R 40 -
0.75-
(2]
E ® 30-
£
<3\0.50-
c
8 204
©
0.25-

—_— 10-
[ ]

OOO' O_ e—— ——

CephFS  SPFS SSD CephFS  SPFS SSD

Figure 5.2.: Latency measured for different storage media: the latency for access on the net-
work storage is significantly higher and with a higher variance than the local SSD.
For SlowPokeFS, the latency is 50ms as configured with an absolute variance com-
parable to the SSD.

Storage media used are network storage, a built-in SSD, and an SSD storage artificially slowed
with SlowPokeFS, which introduce a flat latency to each I/O-operation of 50ms. Three random
read-write configurations were executed to measure the throughput of this media.

« 1 I/O-stream, which writes and reads random blocks of size 4kB to test for small data
access

« 16 I/O-streams which each write and read a random block of the size of 64k to test
parallel scaling with larger packages

1 I/O-stream, which writes and reads random blocks of size 1GB to test sequential file
access performance.

The fio (Axboe, 2012, October 22/2022) tests results are shown in figure 5.1. As expected, the
SSD’s bandwidth for random small accesses is significantly higher than for PFS or SlowPokeFS.
For high parallel access and large access, the local storage medium is outperformed by the
PFES since the network bandwidth is larger than the bandwidth of the SSD (see tbl. 5.1), and
CephFS seems to have a good load balancing. The SlowPokeFS is, as intended, by far the worst
in each category, which will give insight in cases where the performance of SSD and PFS is
indistinguishable.

To test the latency, ioping was used, the results for different media are plotted in figure 5.2
(Khlebnikov, 2015, March 29/2022). As seen, the latency variance of the PFS is much larger
than of the SSD, which likely results from the network and metadata handling. The SSD has
significantly lower latency, and as intended SlowPokeFS shows the highest latency for more
detailed benchmark results.
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Table 5.1.: Shows connectivity between the benchmarks nodes in GBits/s. The maximal band-
width per channel is 40Gbits/s, and the total bandwidth per connection is around
100Gbits/s. These values were measured using iperf.

#connections  bandwidth total channel 1 2 3 4 5
1 40.6 = 40.6
92.6 = 28.1 + 31.6 + 32.9
5 93.9 = 18.6 + 18.7 + 19.0 + 18.5 + 19.2

Finally, the connectivity between the two nodes was tested with iperf (“Iperf3”, 2022). A one-
channel transfer was made to test the maximal available throughput per channel, a transfer
with three channels on three cores, and another transfer with five channels on five cores were
performed to measure the connection’s maximal bandwidth. As seen in table 5.1, the maximal
bandwidth per core is 40Gbits/s, and the maximal total bandwidth is 100GBits/s, which means
that all access to the PFS is capped at 5GB/s per core or 12GB/s totally. These bandwidth
caps were sufficiently high to not impact the test results, since they are above the measured
performance values (see fig. 5.1).

5.3. Policies

Three policies were implemented to evaluate the constructed interface and check if the mech-
anism provides the required calculation times and performs migrations as intended. This way
the capabilities of the designed interface and whether the locking leads to starvations or dead-
locks can be tested.

The first policy? is a dummy policy. This policy will put everything on the same tier and never
migrate. This allows recognizing the overhead for the new redirect layer and other additional

calls compared to JULEA without policies. It also allows straight support for only one object
backend.

The second policy is a default LRU3. Because requesting used memory is not a simple task, the
fast tier size is defined by object count instead of size. The impact for the selected use cases
is small since partdiff writes equally sized checkpoints, and the output of the Enzo test case
writes objects of 33 to 50kB. This also allows for a more straightforward implementation and,
consequently, less latency until the migrations starts. The number of objects allowed for the
fast tier can be passed as an argument. It will be tailored to the task, e.g., if the partdiff
object is twice as large as an Enzo object, it will only have half the number of slots.

The third policy is a write buffer policy?, which places new objects on the fasts tier, if possible,
and keeps them there for a fixed amount of time. After this time interval, the object is moved
to a lower tier. This migration timer is implemented to account for the fact that creating
and writing an object are two sub-sequential commands, as well as that large objects may be
split into multiple write commands. The time interval will be different for each use case and

*backends/object/policies/test.c
3backends/object/policies/Iru.c
*backends/object/policies/write buffer.c
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depends on the time between data bursts. The timeout was determined based on access charts
as shown in figure 5.7.

Aside from the different behavior, depending on the complexity, the calculation times for each
of the three policies are also different. While the dummy policy only provides empty functions,
the write-buffer-policy needs the object creation to queue the migration of an object. In con-
trast, the LRU-policy requires a logic for placing the object on its creation and for processing
when to migrate which objects.

5.4. Tests and Evaluation

The test cases were run separately on two exclusive used nodes to minimize variance. Despite
this, there was high variance in the measurements, especially for the micro-benchmarks. All
data should therefore only be interpreted qualitatively and not quantitatively. If more data is
moved, the performance difference between SSD and CephFS shrinks, as seen in figures 5.6b
and 5.3b. The implementation of the different policies is evaluated based on the analysis of
benchmark results, test applications, and access patterns.

The KV-store in each scenario was placed on the local SSD based on the typically KV-store
storage requirements described in chapter 1. Therefore, all available server-sided KV-stores
supported by JULEA were tested with the JULEA-KV-store micro-benchmarks. Based on the
results shown in figure 5.4, levelDB was selected as backend for the KV-store. LevelDB offers

the best put and delete performance while still being close to the best get performance of
Imdb.

JULEA micro-benchmarks

Figure 5.3 shows the results of different micro-benchmarks. Each benchmark was executed
with the dummy policy and JULEA without policies on each storage media, represented as solid
and dashed lines. In comparison, the performance of the remaining combinations is visualized
as bars. The difference between solid lines and their corresponding dotted lines shows that
the added abstraction layer with the policy system significantly impacts the performance of
simple create/delete/status operations. This may result from the additional KV-store access for
each operation and the overhead for acquiring the lock. Based on figure 5.4, the mean duration
of a levelDB access is 13ps. For the local SSD, the time difference between the dummy policy
and without policy varies between 18 and 20us®. LevelDB, which was used as KV-store, is
probably accountable for % of the overhead in the fastest scenario.

The object backend micro-benchmarks also show that migration can harm the performance,
as seen for the LRU policy, where the create performance is halved compared to the reference
without migration. Only one object is created for the both and the status benchmark and then
immediately deleted or repeatedly requested. The LRU status benchmark shows that the slow
tier does not influence the performance because the object is kept in the fast tier. For the status
benchmark with the writebuffer-policy it can be observed that the data is moved to the slow
tier and impacts the remaining benchmark negatively after the timeout.

1

5p =
#Operations/s
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Figure 5.3.: JULEA micro-benchmarks on different policies, for different scenarios, where hor-
izontal lines represent the performance of unused policies (solid lines) and not
implemented polices (dotted lines). As neither of these policies is fitting for con-
tinuous interaction, they perform worse than a policy that does not migrate.
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Figure 5.4.: Micro-benchmarks for KV-store performance

The write and read performance are only slightly different for SSD and CephFS. Additionally,
the overhead of the policy management is also less noticeable, because write and read opera-
tion have longer execution times. For the combination SSD and CephFS, both policies reduce
the performance since the migration will only lead to more load on the I/O-devices. Further-
more, it is noticeable that the writebuffer-policy performance is better for write access for
SlowPokeFS, which is plausible.

JULEA supports batching commands. Batched commands are sent at once instead of sepa-
rately, which reduces the summed network latencies and, therefore, the total execution time.
All micro-benchmarks were executed with separated and batched commands. The batched
execution increases the performance significantly, but the relationship between the policies
remains the same. Since it is only a qualitative analysis, the data was removed from the figures
for clarity.

In conclusion, the high-frequent management of small objects negatively impacts the addi-
tional abstraction overhead and locking. Also, if smaller objects are written and read, selecting
a suitable and fast policy is essential to maximize the gain.

Application Performance

When analyzing the application performance, at first it was noticed that Enzo’s performance
is similar on all storage media, which is probably a result of their asynchronous write-out, and
small object sizes (see fig. 5.5).

partdiff does not provide asynchronous checkpoint writing and therefore depends more on
the storage performance. The writebuffer-policy performs independently of the slow tier,
because the objects are entirely written to the fast tier and then migrated to the slow tier,
which finishes before the next checkpoint is written as seen in figure 5.7a. In one scenario the
LRU provided no speed up and in another decreased the performance drastically for SSD and
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SlowPokeFS. These results are caused by the limited performance and high latency (figs. 5.2,
5.1) in combination with many unnecessary migrations (fig. 5.7c).

For the reading application, it can be seen that CephFS has a good prediction of which data
are of interest and high throughput since the performance of SSD and CephFS are the same.
As aspected does the writebuffer-policy not impact the read performance. LRU on the other
hand provides a small speedup, through prefetching.

For more realistic use cases, the selected policy can significantly influence the results, posi-
tively as well as negatively. The costs for the additional abstraction are not as significant as
they were for the micro- benchmarks. Also, asynchronous storage management for non-data-
heavy applications can reduce the impact on the selected storage solution.

1000 - = - .-
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timeins
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CephFS NVRAM  SPFS
storage

Figure 5.5.: Total execution time of enzo scenario Hydro-3D/CollapseTestNonCosmological
on different storage media.

Policy Access Pattern

In figure 5.7 the access to the object storage is visualized for a pair of partdiff partdiff_
read execution with the LRU or writebuffer-policy. The beginning of different operations
is denoted with a corresponding mark, where the color indicates on which tier the accessed
object is located. The tier where the object is migrated to is indicated for migrations. Each
object’s first and last access is connected with a line to visualize its lifetime.

Figure 5.7a shows that for the writebuffer-policy in most cases, only one object is on the
fast tier at a time. This tailored timeout improves the performance, as seen in figure 5.6a,
while only requiring a small part of the BB. By increasing the timeout, the space needed on
the BB increases too. Figure 5.7b shows that five other objects were created and stored in the
BB between creating the object and demoting it when the timeout is increased from 100 to
15000ms, which results in five times the memory consumption.

Figure 5.7c shows why the partdiff performance of the LRU-policy is worse than the refer-
ence case. The fast tier is fully populated; therefore, all new objects are moved to the slow
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Figure 5.6.: Time plots for different uses cases over different policies, with horizontal lines
marking the performance without policies. As a reference, the dotted line rep-
resents the performance without policy management overhead. In general, the
policy introduces overhead, but when used right it can increase performance.
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tier. Then, on each mover invocation, many objects are evacuated from the fast tier, and a
new batch is loaded, even though this batch is not needed anymore. This increases the load
on the storage device and locks the object for access during the migration, which delays access
further. A similar problem can be seen during reading access.

The wrap size in the LRU-policy-access of 12 equals the object size set as the limit for the fast
tier. This shows that after completing the migration operations, enough new requests were
generated to completely swap out the high tier again. First, it would probably be better to
clear the high tier and then reevaluate before promoting objects. Then, new objects can be
created at the high tier instead of the slow.

Concluding Thoughts

The implementation of the LRU-policy is simple since each access pushes a message in a
GAsyncQueue and process. This information from this queue is used to populate a ring buffer.
This implementation and the implementation for the writebuffer-policy were easily achieved
in only 250 and 120 lines of code, respectively. Conveniently, objects have an ID that allows
for easier and faster hint generation for the LRU policy. However, since migration is not possi-
ble with that ID, a list of all objects must be handled in each policy. The additional problem is
that a migration once started waits until the object is able to migrate. This prohibits the policy
from starting another migration if one object is still in use or initiating multiple migrations in
parallel.

This can results in a scenarios where the HSM performance is equal to or worse than only
using the slow tier. In combination with the observation that PFS can outperform local BB
this leads to the question whether a HSM is useful or if the performance provided from the
PES is sufficient. The read and write bursts from partdiff and pardiff_read have shown in
combination with LRU that through the higher calculation times and additional management
overhead mechanism working for CPU-Caches can not be transferred straight to HSM. Also, as
seen in figure 5.7b, the wrong configuration can lead to using too many resources, ultimately
limiting concurrently used resources.
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(c) LRU policy access. As seen left, the policy migrates data from the slow
to the fast tier (red star), but does so too late, since the burst is already
over, and migrates them back to the slow tier (blue star), which results in
additional I/O-Operation and therefore reduced performance.

Figure 5.7.: Object access visualization for different policies for execution of partdiff and

partdiff-read sequenced: Each object is represented by a horizontal life line.
Each access is denoted with a mark, which represents different access types. The
mark’s color denotes on which tier the object is after that operation. A special case
is the migration mark, and a red migration mark stands for migration from blue to

red. The total execution time was 3min. 47






Chapter 6.

Conclusion

This chapter starts with a summary of the thesis then suggests improving the implemented
mechanism further based on insights from working with it.

6.1. Summary

A mechanism was written to integrate module-based HSM policies in JULEA for object storage
to provide a fast and easy option to prototype and test these policies for research purposes.
Multiple currently researched HSM policy approaches were evaluated and adopted for the
interface design. General concerns that also influenced the design were listed in section 4.1.1.
To manage the policy modules a new abstraction layer was introduced on top of the object
backend (JBackendStack).

The implementation was tested on a client-server JULEA setup, with different storage se-
tups, each containing two tiers for simplicity. In addition to the execution times of micro-
benchmarks and applications, the access pattern was also analyzed for deeper insight into the
object migration.

The tests show that a tailored policy can improve object storage performance within the sys-
tem. However, they also show that the opposite can be the case. The policy should therefore
be adapted to the use case and parameterized.

A new abstraction layer and additional data needed to be managed with the new module,
which led to slower performance even if only a dummy policy was used. Also, especially
for workflows with small or empty objects, the hint function can significantly impact the
performance, which should also be considered when writing a policy. The interface allows for
a simple implementation of these test case policies without modifying them.

In conclusion to maximize the performance gain and avoid negative impacts HSM-policies
should be designed with the application in mind (Ghoshal & Ramakrishnan, 2021; Lehner,
2017).

6.2. Future Work

While working on this thesis, different areas for further improvements and extensions were
identified, namely improving the interface, performance, tooling, and integration.
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The interface can be further improved by merging more with the JBackend interface. Cur-
rently both j_backend_stack_begin and j_backend_begin being are called, and again for
closing, which feels redundant and could be avoided. Furthermore, a more flexible approach
for migration calls would allow more straightforward implementation and more variety for
policies. For example, could migration calls take an array of commands and parallelize the mi-
gration or allow for out-of-order execution. Also, implementing non-blocking migration calls
or migration calls that immediately return if the resource is busy would allow for faster and
more performant implementations. A configurable execution interval for the process func-
tion, as described in section 4.2.3, could streamline the policy creation and testing further.

As demonstrated, the performance impact of the abstraction can be highly dependent on the
use case. To better support a variety of use cases the following enhancements are suggested.
Currently, each object gets a new lock. These locks could be reused and reconstructed with a
mutex to allow for more control by the OS and, therefore, reduced platform dependency. Also,
it may be possible to still allow read access while migrating an object to hide migration times
further. The introduction of a cache semantic which would create a copy of an object on a
faster tier and will only migrate it back if changes are made. Furthermore, if only one object
backend is used, the policy mechanism should be opt-in to avoid unnecessary performance
loss. Furthermore, it could be researched if the order of calling the hinting functions and
execution of the object access impacts the performance.

Another issue is that currently it cannot be checked how long different parts are waiting for
an event to occur. It would give a lot more insight if it were possible to see when actions
are issued and when they are executed, and how long they queued before and why. With
this information it would be possible to identify further factors for performance optimization
within the policy module.

Experiments with example implementations of simple policies have shown how essential tai-
lored parameters are as they can, reducing the memory footprint as shown for the write-
buffer-policy. It would be further possible for the writebuffer-policy to deduce that pa-
rameter automatically, based on the duration between object creation and last write-access.
Semi and full automatic policy parameter deduction can improve the efficiency of policies and
should be further pursued.

The last area for further improvements is the integration into JULEA. Currently, it is only
possible to use the policy at a JULEA server. However, the framework also supports accessing
the backend directly without a server and network in between. Supporting direct access would
also give better insights into performances of different HSMs, since it would eliminate network
latency and limitations.
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Glossary

CephFS 7CephFS, is a POSIX-compliant file system built on top of Ceph’s distributed object
store, RADOS”(“Ceph File System — Ceph Documentation”, 2022). 44

LRU Leastrecently used is a cache policy which “discards the least recently used items first”(“Cache
Replacement Policies”, 2022). 9, 40, 41, 43, 44, 46

PFL “Progressive file layouts are characterized by increasing the stripe count of the file in a
step-wise manner as the file offset increases”(“Progressive File Layouts - Lustre Wiki”,
2022). 19

SlowPokeFS “Simulates slow disk IO using FUSE. Generally useful for testing”(Schoenmakers,
2013, April 8/2021). 37-39, 43-45
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