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Programming with POSIX Threads Review

• Which aspect is not part of the POSIX Threads standard?
1. Thread management
2. Mutexes
3. Semaphores
4. Condition variables
5. Synchronization
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Programming with POSIX Threads Review

• Which thread-to-task mapping does Linux use?
1. 1:1 mapping (each thread is mapped to a kernel task)
2. n:1 mapping (all threads are mapped to one kernel task)
3. m:n mapping (multiple threads are mapped to multiple kernel tasks)
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Programming with POSIX Threads Review

• What happens if a thread is not joined after termination?
1. The process can crash
2. Zombie threads remain
3. Stack memory can overflow
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Programming with POSIX Threads Review

• When will a thread be canceled by pthread_cancel?
1. Before the next function call
2. After the next function call
3. After a timeout of 100 ms
4. After an I/O operation such as printf
5. When a cancellation point function is called
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Motivation Introduction

• Shared memory systems have limited scalability
• Two to four processors with a few dozen cores

• Complex problems require more nodes
• Distributed memory can be scaled arbitrarily

• Nodes are connected via a network
• Determines scalability and performance

• Different network technologies and topologies
• Major competitors: Ethernet and InfiniBand
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Motivation. . . Introduction

• OpenMP is a convenient and high-level programming concept
• It is limited to shared memory systems

• Parallel applications across multiple nodes require message passing
• Message Passing Interface (MPI) provides necessary functionality

• MPI supports basic and complex operations
• Sending, receiving, reduction etc.
• Process groups and synchronization
• Point-to-point, collective or one-sided communication

• MPI also offers parallel I/O
• Concurrent access to shared files
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Message Passing Interface Introduction

• MPI is a standard by the MPI Forum
• Over 40 participating organizations
• First standardized and vendor-independent API
• MPI is not a library but a specification of one

• There are multiple implementations of the standard
• MPICH, MVAPICH, OpenMPI, Intel MPI etc.
• Vendors often provide their own implementations
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Message Passing Interface. . . Introduction

• MPI implementations are not necessarily binary-compatible
• They have the same API but different ABIs
• Compiling an application works with any implementation

• Running compiled application requires original implementation
• Different implementations might have different constants etc.
• Way to start processes on different nodes might differ

• Some implementations promise ABI compatibility
• MPICH ABI Compatibility Initiative for MPICH, Intel MPI, Cray MPT, MVAPICH2,

Parastation MPI and RIKEN MPI [MPICH Collaborators, 2024]
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Challenges Introduction

• Parallel applications now run as independent processes
• Processes can only access their own data, no shared memory
• No risk of overwriting other processes’ data accidentally
• Results have to be communicated between processes

• Application code is typically still contained in one file
• MPI allows us to write a generic version of the application
• We can determine our rank and the number of processes
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Challenges. . . Introduction

• MPI applications often use SPMD
• All tasks execute same application but at different points
• Tasks use different data (domain decomposition)
• Additional logic to execute only parts of the application

• Decomposition is critical for achievable performance
• Rows might be faster than columns depending on memory layout
• Size of sub-domains determines load of each task

• Distribution also determines communication schema
• Communication might have to be performed at boundaries
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Challenges. . . Introduction

• Application has to be made available on multiple nodes
• This is normally achieved by using a common file system on all nodes
• For instance, an NFS file system can be mounted everywhere

• Processes have to be started on participating nodes
• Many implementations include support for spawning processes via SSH
• The batch scheduler can also take care of it, requires coordination

• Processes have to locate each other and coordinate
• Similar to previous point, implementation often takes care of both
• If the scheduler is involved, it has to pass information to the implementation
• Process Management Interface (PMI) is typically used to connect components
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MPI History

• MPI is the current de-facto standard in HPC
• Previously, Parallel Virtual Machine (PVM) was widely used

• MPI is developed by the MPI Forum, started in 1992
• MPI-1.0 in 1995: Basic features, communication only
• MPI-2.0 in 1997: Additional features, including I/O
• MPI-3.0 in 2012: Better support for one-sided communication
• MPI-4.0 in 2021: Large-count routines, persistent collectives

• Standard is important for portability across different systems
• MPI also offers high performance and convenience
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Interface History

• MPI standard defines an API for C and Fortran
• C++ used to be available but has been deprecated
• Bindings are also available for Python, Java etc.

• Abstraction to support efficient communication and I/O
• Functions have to be high-level enough to be able to apply optimizations

• Standard allows thread-safe implementations but does not require them
• MPI implementations are typically thread-unsafe by default
• Thread-safety does have a performance impact due to locking etc.
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Interface. . . History

• MPI defines syntax and semantics
• Syntax determines arguments, semantics how a function behaves

• Example: Function for sending data
• Standard includes description of behavior and rationale

• “The send call [...] is blocking: it does not return until the message data and envelope have
been safely stored away so that the sender is free to modify the send buffer.”
[Message Passing Interface Forum, 2015]

• Abstract: MPI_SEND(buf, count, datatype, dest, tag, comm)

• Arguments are annotated as IN/OUT/INOUT and described

• C: int MPI_Send(const void* buf, ...)

• Return value via normal method

• Fortran: MPI_Send(buf, ..., ierror)

• Return value via extra argument (ierror)
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Interface. . . History

• Non-blocking
• Call returns before operation has been completed
• User might not be allowed to reuse specified resources (for example, buffers)

• Blocking
• User is allowed to reuse resources

• Local
• Completion of a call depends only on the local process

• Non-local
• Completion of a call might depend on remote processes
• Communication might be required to happen before completion

• Collective
• All processes in a communicator have to be involved in a call
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History History

• 1992: “Standards for Message Passing in a Distributed Memory Environment”
• Working group established and prepares draft for MPI-1
• Group consists of 175 people from 40 organizations

• 1994: MPI-1.0 is released
• MPI-1.1 in 1995, MPI-1.2 in 1997 and MPI-1.3 in 2008
• Point-to-point and collective communication
• Groups, communicators and topologies
• Environment checks
• Profiling interface
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History. . . History

• 1998: MPI-2.0 is released
• MPI-2.1 in 2008 and MPI-2.2 in 2009
• One-sided communication
• Dynamic process management
• Parallel I/O

• 2012: MPI-3.0 is released
• MPI-3.1 in 2015
• Improved one-sided communication
• Non-blocking collectives
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History. . . History

• 2021: MPI-4.0 is released
• MPI-4.1 in 2023
• Large-count versions of many routines
• Persistent collectives
• Partitioned communication
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Compiler Support History

• MPI implementations consist of headers and libraries
• Main header (mpi.h) has to be included
• Applications have to be linked to MPI libraries

• MPI provides own compilers for convenience
• mpicc for C and mpifort for Fortran
• These are usually compiler wrappers around the underlying compiler

• Compiler wrappers take care of linking etc.
• Compiler flags can usually be extracted if linking should be done manually
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Initialization Groups and Communicators

• MPI needs to be initialized and finalized
• Has to be done manually
• Do as little as possible before and after

• MPI_Init expects application’s arguments
• MPI might parse certain arguments
• It is possible to pass NULL to ignore

1 int main(void) {

2 MPI_Init(NULL , NULL);

3 hello();

4 MPI_Finalize ();

5

6 return 0;

7 }
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Initialization Groups and Communicators

• MPI uses communicators
• Basically a group of processes

• We can determine our rank
• Same as OpemMP’s thread ID

• We can query the communicator’s size
• This is the total amount of processes

1 void hello(void) {

2 int rank;

3 int size;

4

5 MPI_Comm_rank(MPI_COMM_WORLD ,

6 &rank);

7 MPI_Comm_size(MPI_COMM_WORLD ,

8 &size);

9

10 printf("Hello from %d/%d.\n",

11 rank , size);

12 }
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Initialization Groups and Communicators

• We can start the application directly
• It will usually start with one process

• mpiexec allows spawning more processes
• Optional and specified by the standard
• There is also often mpirun

• The -n argument is standardized
• Implementations provide additional ones

$ ./hello

Hello from 0/1.

$ mpiexec -n 1 ./hello

Hello from 0/1.

$ mpiexec -n 4 ./hello

Hello from 0/4.

Hello from 3/4.

Hello from 1/4.

Hello from 2/4.
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Multi-Threaded Initialization Groups and Communicators

• MPI_Init only allows serial processes
• That is, no threads are allowed to run

• Thread-safety requires locks
• MPI is tuned for high performance
• Locking overhead should be avoided

• MPI_Init_thread allows requesting a
thread-safety level

• Implementations may not support all

1 int main(void) {

2 int thread_level;

3

4 MPI_Init_thread(NULL , NULL ,

5 MPI_THREAD_MULTIPLE ,

6 &thread_level);

7

8 printf("thread_level =%d\n",

9 thread_level);

10

11 MPI_Finalize ();

12 return 0;

13 }
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Multi-Threaded Initialization Groups and Communicators

• MPI_THREAD_SINGLE

• Only one thread will run

• MPI_THREAD_FUNNELED

• Process can be multi-threaded but only the
main thread will make MPI calls

• MPI_THREAD_SERIALIZED

• All threads can make MPI calls but not at
the same time

• MPI_THREAD_MULTIPLE

• Threads can make MPI calls in parallel

1 int main(void) {

2 int thread_level;

3

4 MPI_Init_thread(NULL , NULL ,

5 MPI_THREAD_MULTIPLE ,

6 &thread_level);

7

8 printf("thread_level =%d\n",

9 thread_level);

10

11 MPI_Finalize ();

12 return 0;

13 }
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Multi-Threaded Initialization Groups and Communicators

• MPI_THREAD_SINGLE

• Only one thread will run

• MPI_THREAD_FUNNELED

• Process can be multi-threaded but only the
main thread will make MPI calls

• MPI_THREAD_SERIALIZED

• All threads can make MPI calls but not at
the same time

• MPI_THREAD_MULTIPLE

• Threads can make MPI calls in parallel

$ ./ init_thread

thread_level =3

$ mpiexec -n 4 ./ init_thread

thread_level =3

thread_level =3

thread_level =3

thread_level =3
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Miscellaneous Groups and Communicators

• MPI_Get_processor_name

• Returns an implementation-defined processor name
• This typically returns the hostname of the current node

• MPI_Initialized

• Checks whether MPI has been initialized
• Useful if libraries want to check for MPI support

• MPI_Wtime

• Returns wall-clock time for time measurements

• MPI_Wtick

• Returns resolution of MPI_Wtime
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Rationale Groups and Communicators

• Communicators allow separating different sets of processes
• Groups contain processes
• Communicators are based on groups

• All processes are available by default (MPI_COMM_WORLD)
• Ranks are numbered from 0 to n-1

• Communicators can be used to define independent contexts
• For instance, MPI-aware library should not interfere with application

• Some operations should only be performed by the local process
• If they require a communicator, MPI_COMM_SELF can be used
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Communicators Groups and Communicators

• Chicken and egg problem
• Creating new communicator requires an

existing communicator
• MPI_COMM_WORLD can be used

• Processes can have multiple ranks
• Rank only valid in a communicator
• Processes can belong to multiple

groups and communicators

1 void comm(void) {

2 MPI_Comm new_comm;

3 MPI_Group new_group;

4 MPI_Group world_group;

5

6 MPI_Comm_group(MPI_COMM_WORLD ,

7 &world_group);

8 MPI_Group_incl(world_group ,

9 size , reverse_ranks ,

10 &new_group);

11 MPI_Comm_create(MPI_COMM_WORLD ,

12 new_group , &new_comm);

13

14 print_rank(new_comm);

15 }
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Communicators Groups and Communicators

• Chicken and egg problem
• Creating new communicator requires an

existing communicator
• MPI_COMM_WORLD can be used

• Processes can have multiple ranks
• Rank only valid in a communicator
• Processes can belong to multiple

groups and communicators

1 void print_rank(MPI_Comm comm) {

2 int new_rank;

3

4 MPI_Comm_rank(comm , &new_rank);

5 printf("rank=%d (world=%d)\n",

6 new_rank , rank);

7 }

$ mpiexec -n 4 ./comm

rank=3 (world =0)

rank=2 (world =1)

rank=1 (world =2)

rank=0 (world =3)
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Guarantees Point-To-Point Communication

• Message order is guaranteed
• If a process sends two messages, the first one will be received first
• If a process posts two receives, the first one will get the message

• Rules do not apply when multi-threaded
• If two threads send one message each, their order is undefined
• Would require coordinating threads, that is, introduce overhead

• There are no fairness guarantees
• A message might never be received because of other matching messages
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Sending and Receiving Point-To-Point Communication

• Point-to-point between two processes

• Sending
• Buffer: Data to send
• Count: Number of elements
• Datatype: Type of elements
• Destination: Target rank
• Tag: Distinguish messages
• Communicator: Process mapping

1 void mysend(void) {

2 char str [100];

3 snprintf(str , 100,

4 "Hello from %d\n", rank);

5

6 MPI_Send(str , 100, MPI_CHAR ,

7 (rank + 1) % size ,

8 0, MPI_COMM_WORLD);

9 MPI_Recv(str , 100, MPI_CHAR ,

10 (size + rank - 1) % size ,

11 0, MPI_COMM_WORLD ,

12 MPI_STATUS_IGNORE);

13

14 printf("%d: %s", rank , str);

15 }
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Sending and Receiving Point-To-Point Communication

• Point-to-point between two processes

• Receiving
• Buffer: Where to receive data
• Count: Number of elements
• Datatype: Type of elements
• Source: Source rank
• Tag: Distinguish messages
• Communicator: Process mapping
• Status: Query information

1 void mysend(void) {

2 char str [100];

3 snprintf(str , 100,

4 "Hello from %d\n", rank);

5

6 MPI_Send(str , 100, MPI_CHAR ,

7 (rank + 1) % size ,

8 0, MPI_COMM_WORLD);

9 MPI_Recv(str , 100, MPI_CHAR ,

10 (size + rank - 1) % size ,

11 0, MPI_COMM_WORLD ,

12 MPI_STATUS_IGNORE);

13

14 printf("%d: %s", rank , str);

15 }
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Sending and Receiving Point-To-Point Communication

• Point-to-point between two processes

• Ring communication
• Send to next process
• Receive from previous process
• Output order might be mixed

$ mpiexec -n 4 ./send

1: Hello from 0

0: Hello from 3

3: Hello from 2

2: Hello from 1
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Sending and Receiving. . . Point-To-Point Communication

• Might not be clear from which process to receive
• Functions require specifying a source rank and tag

• Wildcards allow matching any source or any tag
• MPI_ANY_SOURCE instead of actual source rank
• MPI_ANY_TAG instead of actual source tag

• We still might be interested to know which rank and tag a message came from
• Can be queried via MPI_Status’s MPI_SOURCE and MPI_TAG members

• MPI_Get_count returns the number of received elements
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Quiz Point-To-Point Communication

• What happens if we send 100,000 bytes?
1. The same as with 100
2. Application deadlocks
3. Crash due to stack overflow
4. MPI warns about too many elements

1 void mysend(void) {

2 char str [100];

3 snprintf(str , 100,

4 "Hello from %d\n", rank);

5

6 MPI_Send(str , 100, MPI_CHAR ,

7 (rank + 1) % size ,

8 0, MPI_COMM_WORLD);

9 MPI_Recv(str , 100, MPI_CHAR ,

10 (size + rank - 1) % size ,

11 0, MPI_COMM_WORLD ,

12 MPI_STATUS_IGNORE);

13

14 printf("%d: %s", rank , str);

15 }
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Blocking Send Point-To-Point Communication

• MPI_Send is the default blocking send function
• Standard allows using a buffer but does not mandate it
• “The send call [...] uses the standard communication mode. In this mode, it is up to

MPI to decide whether outgoing messages will be buffered. [...] In such a case,
the send call may complete before a matching receive is invoked. On the other hand,
[...] MPI may choose not to buffer outgoing messages, for performance reasons. In this
case, the send call will not complete until a matching receive has been posted, and the
data has been moved to the receiver. [...] The standard mode send is non-local:
successful completion of the send operation may depend on the occurrence of a
matching receive.” [Message Passing Interface Forum, 2015]

• Buffering is typically only used for small messages
• Larger messages make the send operation synchronous
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Blocking Send. . . Point-To-Point Communication

• There are a number of different send/receive variants
• Synchronous send (MPI_Ssend)

• Blocks until the destination process has started to receive the message
• Behaves like MPI_Send for large messages

• Blocking and non-blocking (MPI_Send and MPI_Isend)

• Blocking behavior specifies when calls return and buffers can be reused
• Non-blocking allows overlapping communication with computation

• Buffered (MPI_Bsend)

• Data is explicitly buffered, buffers have to be provided manually
• Behaves like MPI_Send for small messages

• Ready send (MPI_Rsend)

• Requires matching receive operation to be started already, otherwise undefined

• Combined blocking send and receive (MPI_Sendrecv)

• Avoids deadlocks due to blocking sends waiting for receives to be posted
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Non-Blocking Send Point-To-Point Communication

• Non-blocking send does not deadlock
• I stands for immediate

• MPI_Wait blocks until completion
• Functions to wait for multiple requests

(all, any or some)
• It is an error not to wait or access the

buffer before the send has finished

• Alternatively, MPI_Test or MPI_Probe

1 void mysend(char* str , char* buf) {

2 MPI_Request req;

3

4 MPI_Isend(str , 100000 , MPI_CHAR ,

5 (rank + 1) % size ,

6 0, MPI_COMM_WORLD , &req);

7 MPI_Recv(buf , 100000 , MPI_CHAR ,

8 (size + rank - 1) % size ,

9 0, MPI_COMM_WORLD ,

10 MPI_STATUS_IGNORE);

11 MPI_Wait (&req ,

12 MPI_STATUS_IGNORE);

13

14 printf("%d: %s", rank , buf);

15 }

Michael Kuhn Programming with MPI 28 / 41



Non-Blocking Send Point-To-Point Communication

• Non-blocking send does not deadlock
• I stands for immediate

• MPI_Wait blocks until completion
• Functions to wait for multiple requests

(all, any or some)
• It is an error not to wait or access the

buffer before the send has finished

• Alternatively, MPI_Test or MPI_Probe

$ mpiexec -n 4 ./ isend

2: Hello from 1.

0: Hello from 3.

1: Hello from 0.

3: Hello from 2.

Michael Kuhn Programming with MPI 28 / 41



Combined Send and Receive Point-To-Point Communication

• Combined blocking send and receive
• Still blocking but avoids deadlock

• Abstraction to achieve typical use case
• For example, send to and receive from

neighboring processes
• Implementation can handle this specific

use case efficiently and correctly

1 void mysend(void) {

2 char str [100000];

3 char buf [100000];

4 snprintf(str , 100000 ,

5 "Hello from %d.\n", rank);

6

7 MPI_Sendrecv(str , 100000 ,

8 MPI_CHAR , (rank + 1) % size ,

9 0, buf , 100000 , MPI_CHAR ,

10 (size + rank - 1) % size ,

11 0, MPI_COMM_WORLD ,

12 MPI_STATUS_IGNORE);

13

14 printf("%d: %s", rank , buf);

15 }

Michael Kuhn Programming with MPI 29 / 41



Combined Send and Receive Point-To-Point Communication

• Combined blocking send and receive
• Still blocking but avoids deadlock

• Abstraction to achieve typical use case
• For example, send to and receive from

neighboring processes
• Implementation can handle this specific

use case efficiently and correctly

$ mpiexec -n 4 ./ sendrecv

0: Hello from 3.

3: Hello from 2.

1: Hello from 0.

2: Hello from 1.
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Overview Point-To-Point Communication

Send Receive Testing

Blocking

MPI_Send MPI_Recv MPI_Probe

MPI_Ssend MPI_Wait

MPI_Rsend

MPI_Sendrecv

Non-blocking
MPI_Isend MPI_Irecv MPI_Iprobe

MPI_Issend MPI_Test

• Most functions are available as blocking and non-blocking versions
• There are also non-blocking synchronous functions

• Blocking is easier to use, non-blocking is more efficient
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Overview Collective Communication

• Point-to-point communication happens between two ranks
• Collective communication happens between all ranks

• Which ranks are involved depends on communicator
• By default, we only have MPI_COMM_WORLD and MPI_COMM_SELF

• MPI contains a wide range of collective communication functions
• Broadcast
• Barrier
• Distributing or collecting data

• One collective call is often more efficient than many point-to-point calls
• InfiniBand hardware typically has support for efficient collectives
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Overview. . . Collective Communication

• 1:1 communication
• Traditional point-to-point communication such as send and receive

• 1:n communication
• Collective communication such as broadcast

• n:1 communication
• Collective communication such as reduction

• n:n communication
• Collective communication such as reduction to all
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Overview. . . Collective Communication
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Reduction Collective Communication

• Reducing
• Send buffer: Data to reduce
• Receive buffer: Root needs separate buffer
• Count: Number of elements
• Datatype: Type of elements
• Operation: Reduction to perform
• Root: Rank to reduce at
• Communicator: Process mapping

• Reduction operations known from OpenMP
• Apply a given function to multiple buffers,

reducing it to one buffer

• Ordering is arbitrary, might influence result

1 void reduce(void) {

2 int buf = 42;

3

4 MPI_Reduce (&rank , &buf , 1,

5 MPI_INT , MPI_MAX ,

6 0, MPI_COMM_WORLD);

7

8 printf("%d: %d\n", rank , buf);

9 }
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• Operation: Reduction to perform
• Root: Rank to reduce at
• Communicator: Process mapping

• Reduction operations known from OpenMP
• Apply a given function to multiple buffers,

reducing it to one buffer

• Ordering is arbitrary, might influence result

$ mpiexec -n 4 ./ reduce

0: 3

1: 42

2: 42

3: 42
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Reduction to All Collective Communication

• Reducing to all
• Send buffer: Data to reduce
• Receive buffer: Needs separate buffer
• Count: Number of elements
• Datatype: Type of elements
• Operation: Reduction to perform
• Communicator: Process mapping

• No root rank specified anymore
• Reduced buffer is available for all ranks

1 void reduce(void) {

2 int buf = 42;

3

4 MPI_Allreduce (&rank , &buf , 1,

5 MPI_INT , MPI_MAX ,

6 MPI_COMM_WORLD);

7

8 printf("%d: %d\n", rank , buf);

9 }
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Reduction to All Collective Communication

• Reducing to all
• Send buffer: Data to reduce
• Receive buffer: Needs separate buffer
• Count: Number of elements
• Datatype: Type of elements
• Operation: Reduction to perform
• Communicator: Process mapping

• No root rank specified anymore
• Reduced buffer is available for all ranks

$ mpiexec -n 4 ./ allreduce

0: 3

1: 3

2: 3

3: 3
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Quiz Collective Communication

• Why not use MPI_Reduce followed by
MPI_Broadcast?

1. More optimization potential
2. Two collectives could deadlock
3. Data could be broadcasted before

reduction is finished

1 void reduce(void) {

2 int buf = 42;

3

4 MPI_Allreduce (&rank , &buf , 1,

5 MPI_INT , MPI_MAX ,

6 MPI_COMM_WORLD);

7

8 printf("%d: %d\n", rank , buf);

9 }
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Barrier Collective Communication

• Barrier
• Communicator: Process mapping

• Waits for all processes
• Can cause significant overhead
• Often not necessary due to implicit

synchronization via messages

• Does not work for everything
• Terminal output might be buffered
• Output has to be collected from nodes

1 void barrier(void) {

2 printf("%d: before barrier\n",

3 rank);

4

5 MPI_Barrier(MPI_COMM_WORLD);

6

7 printf("%d: after barrier\n",

8 rank);

9 }
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• Barrier
• Communicator: Process mapping

• Waits for all processes
• Can cause significant overhead
• Often not necessary due to implicit

synchronization via messages

• Does not work for everything
• Terminal output might be buffered
• Output has to be collected from nodes

$ mpiexec -n 4 ./ barrier

1: before barrier

0: before barrier

2: before barrier

2: after barrier

3: before barrier

3: after barrier

0: after barrier

1: after barrier
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Rationale Derived Datatypes

• MPI supports most basic data types out of the box
• char, int, long, float, double etc.

• Applications often use their own data types
• For instance, structures containing multiple values

• MPI allows handling these data types directly
• Developers have to replicate the data types for MPI
• MPI might be able to handle them more efficiently then

• Data types can then be specified like normal ones
• Every function that accepts a data type also accepts derived ones
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Non-Contiguous Data Types Derived Datatypes

• Example: Diagonal of a 3×3 matrix
• For instance, within a function doing

parallel matrix calculations

• MPI supports a vector data type
• Count: Number of blocks
• Block length: Elements per block
• Stride: Elements between blocks
• Old type: Old data type
• New type: New data type

1 int MPI_Type_vector (

2 int count ,

3 int blocklength ,

4 int stride ,

5 MPI_Datatype oldtype ,

6 MPI_Datatype* newtype)

1 MPI_Type_vector (3, 1, 4,

2 MPI_DOUBLE , &newtype);

3 MPI_Type_commit (& newtype);

4 MPI_Send(matrix , 1, newtype ,

5 rank , 0, MPI_COMM_WORLD);
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Non-Contiguous Data Types Derived Datatypes

• Matrix is stored in row- or column-major order
• 3×3 matrix has three diagonal elements
• Each diagonal element is a double value
• Diagonal elements are four values apart

• Can be generalized for arbitrary dimensions
• Sender and receiver have to agree on data type

• There are many more data type constructors
• Interactive tools can help create own derived

data types [RookieHPC, 2024]

1 MPI_Type_vector (3, 1, 4,

2 MPI_DOUBLE , &newtype);

1 2 3

4 5 6

7 8 9
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Summary Summary

• MPI is a standard for parallel programming on distributed memory systems
• It supports communication, synchronization, I/O and much more

• Groups of processes can be assigned to communicators
• Allows separating different parts of an application or library

• Point-to-point communication allows sending messages between two processes
• There are various versions of basic send and receive functions

• Collective communication involves all processes in a communicator
• This includes actual communication as well as synchronization functionality

• Derived data types allow MPI to handle application-specific data types directly
• Allows the MPI implementation to make access more convenient and efficient
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