Operating System Concepts

Parallel Programming
2024-11-18

A

OTTO VON GUERICKE

UNIVERSITAT
MAGDEBURG

Prof. Dr. Michael Kuhn

michael.kuhn@ovgu.de

Parallel Computing and 1/0

Institute for Intelligent Cooperating Systems
Faculty of Computer Science

Otto von Guericke University Magdeburg
https://parcio.ovgu.de

mailto:michael.kuhn@ovgu.de
https://parcio.ovgu.de

Outline

Operating System Concepts
Review
Introduction
Basics
Concurrency and Parallelism
Operating System Internals

Summary

Programming with OpenMP Review

int main(void) {
omp_set_num_threads (3);

AW N =

« How many threads run in this example? #pragma omp parallel

return 0;

1. Twelve (nproc output) = num_threads (4) 1if (1)

5 printf("Hello world from "
2. Four

6 "thread %02d/%02d.\n",
3. Three

7 omp_get_thread_num(),
4. Two 8 omp_get_num_threads());
5. One 9

0

1

—_

Michael Kuhn Operating System Concepts 1/39

Programming with OpenMP Review

1 int main(void) {

2 int i;

3

4 omp_set_num_threads (2);

5

« What happens in this example? : #pragma omp parallel

1. The same as with parallel for 7 for (i = @; i < 10; i++) {
2. Compiler exits with an error 8 printf("i=%d, id=%d\n",
3. Both threads calculate the whole loop 9 i, omp_get_thread_num()
4. Undefined behavior due to race condition 19);

11 }

12

13 return 0;

14 | 3}

Michael Kuhn Operating System Concepts 1/39

Programming with OpenMP

« What is the fastest synchronization construct for incrementing a variable?

Michael Kuhn

1. critical
2. atomic

3.

4. omp_lock_t

reduction

Operating System Concepts

Review

1/39

Outline

Operating System Concepts
Review
Introduction
Basics
Concurrency and Parallelism
Operating System Internals

Summary

Motivation Introduction

o Parallel programming often requires low-level knowledge

« Hardware architecture (NUMA), scheduling, affinity etc.
+ The operating system is involved in many decisions

« Having a basic understanding of operating system concepts is necessary
« We will take a look at some of those concepts

« Applications, processes and threads
« Privileges, kernel/user mode and thread-safety
« Inter-process communication (IPC) via shared memory

Michael Kuhn Operating System Concepts 2/39

Applications, Processes and Threads Introduction

« Application
« Executable binary, usually compiled from source code

« Applications can be started as processes
 Process

« Operating system object to manage application instances
« Isolated address spaces due to security reasons

« Files, allocated memory etc. are managed per-process
o Thread

« Lightweight process or sub-process
« Shared address space for all threads within a process

Michael Kuhn Operating System Concepts 3/39

Outline

Operating System Concepts
Review
Introduction
Basics
Concurrency and Parallelism
Operating System Internals

Summary

Operating System Basics

» Operating system manages applications, processes and threads
- Provides functionality to start new processes etc.
« Uses similar concepts internally

« Operating system is often used synonymously with kernel
« Kernel is an application that runs directly on top of the hardware

« Uses threads for performance improvements and separation of concerns
« Operating system is responsible for much more

« File system, 1/0, network, user/group management etc.

Michael Kuhn Operating System Concepts 4/39

Operating System... Basics

« Operating system schedules tasks

« Tasks can be processes, threads, kernel threads etc.
« Available cores are used to execute tasks

 Achievable performance depends on scheduling policy

« Cooperating threads should be scheduled at the same time

« There are usually more tasks to be scheduled than cores available
« Processes and threads can be mapped differently to tasks

« Most operating systems use a 1:1 mapping

Michael Kuhn Operating System Concepts 5/39

Privileges

Privileges are separated into rings

« Processors usually support four rings
« Possible to transition between rings
« OSs often only use rings 0 and 3

Kernel mode allows full hardware access

« Privileged operations and physical memory

« Also called supervisor mode
+ User mode is restricted

« Reduced privileges, virtual memory
« Newer processors have a ring -1

« Used for hypervisor mode

Michael Kuhn Operating System Concepts

Basics

Kernel-Mode
Ring 0

¢
Ring 1

Ring 2

[Sven, 2006]

6/39

Privileges... Basics

« Transitions between rings are called mode switches
« Can be caused by system calls or interrupts
« Supervisor mode allows processes full access

« Physical address space, memory management, peripherals etc.

« Allowed for the kernel but not for user applications
« User applications have to perform system calls into kernel mode

« Kernel can then use supervisor mode to make privileged changes
« Kernel returns execution to user space afterwards

Michael Kuhn Operating System Concepts 7/39

Privileges... Basics

« System calls can be quite expensive

« Sometimes more than 1,000 processor cycles

Earlier attempts at putting performance-critical software into the kernel
« For instance, a web server for reduced access latency
« Problematic from a security point of view due to privileges

« Linux injects vDSO (virtual dynamic shared object) into processes

« Allows avoiding system calls in some cases

« malloc does not perform system calls for each allocation

Newer approaches use kernel bypass to reduce overhead

- For instance, applications talk directly to the network card

Michael Kuhn Operating System Concepts 8/39

Privileges... Basics

« x86 uses privilege levels for instructions

« From level 0 to 3, with 0 being the most privileged

« Trying to execute a higher privileged instruction triggers a general protection fault
« Anatomy of a system call

« User process sets up registers and memory, triggers system call

« Software interrupt or special instruction causes switch to kernel mode

« Kernel stores process state and checks user space request

- Either context switch to different process or mode switch back to process

« Usually handled by wrappers in the standard library (1ibc)

Michael Kuhn Operating System Concepts 9/39

Thread-Safety Basics

« Earlier operating systems and libraries were not thread-safe
« Thread-safe code is a bit more complicated and has more overhead
« Example: Functions like strerror from the standard library

. “... returns a pointer to a string that describes the error code ...”
[Linux man-pages project, 2021]
« “This string must not be modified by the application, but may be modified by a

subsequent call to strerror() ...” [Linux man-pages project, 2021]
« Not thread-safe since parallel invocations might modify the string

« Thread-safe versions of these functions have an _r suffix

« Stands for reentrant, which means that a function can be safely used concurrently

Michael Kuhn Operating System Concepts 10/39

Thread-Safety... Basics

- Strictly speaking, reentrancy is different from thread-safety

« Thread-safety means that multiple threads can call a function at the same time
« Reentrancy is mainly used in the context of signal handling and interrupts

« It is therefore also sometimes called signal-safety
« Functions can be interrupted by an interrupt

« The interrupt handler can execute functions

« If the interrupted function is called directly or indirectly, it is “re-entered”

Michael Kuhn Operating System Concepts 11/39

Thread-Safety...

« increment_count is thread-safe

Michael Kuhn

+ Multiple threads can call it at the same time

« There are no race conditions

« Incrementing count is serialized

int

o N o g A w N =

int

10
1
12
13
14
15 |}

Operating System Concepts

increment_count (void)
int result;
omp_set_lock(lock);
result = count++;
omp_unset_lock(lock);

return result;

main(void) {
omp_init_lock(lock);
#pragma omp parallel
increment_count ();
printf("count=%d\n",

{

omp_destroy_lock (lock);

return 0;

Basics

count);

12/39

Thread-Safety...

« increment_count is thread-safe

+ Multiple threads can call it at the same time

« There are no race conditions

« Incrementing count is serialized

e Quiz: Is it also reentrant?

Michael Kuhn

int

o N o oA w NN =

int

10
1
12
13
14
15 |}

Operating System Concepts

increment_count (void)
int result;
omp_set_lock(lock);
result = count++;
omp_unset_lock(lock);

return result;

main(void) {
omp_init_lock(lock);
#pragma omp parallel
increment_count ();
printf("count=%d\n",

{

omp_destroy_lock (lock);

return 0;

Basics

count);

12/39

Thread-Safety...

« increment_count is thread-safe

+ Multiple threads can call it at the same time

« There are no race conditions

« Incrementing count is serialized

e Quiz: Is it also reentrant?

« It is not reentrant, though

1.

Michael Kuhn

increment_count is called by application

2. lock is set by omp_set_lock

3. Function is interrupted

4
5. omp_set_lock will cause a deadlock

Interrupt handler calls increment_count

0 N O OB~ w N =

10
11

12
13
14
15

int

int

Operating System Concepts

increment_count (void)
int result;
omp_set_lock(lock);
result = count++;
omp_unset_lock(lock);
return result;

main(void) {
omp_init_lock(lock);
#pragma omp parallel
increment_count ();
printf("count=%d\n",

omp_destroy_lock (lock);

return 0;

Basics

count);

12/39

Thread-Safety... Basics

int increment_count(void) {
int result;

result = atomic_fetch_add(
« Function is thread-safe and reentrant &count, 1);
« atomic_fetch_add uses atomic instruction FEELr FESLies
« Can be interrupted and reentered at any time

« There is no possibility for a deadlock int main(void) {

« Not all reentrant functions are thread-safe #pragma omp parallel

. increment_count ();
« Still often used synonymously (see POSIX
Y Y y() printf("count=%d\n", count);

12 return 0;

Michael Kuhn Operating System Concepts 13/39

Operating System Basics

+ Thread-safety and reentrancy are also important for the operating system
« No problems if the operating system executes different applications

« All cores are in user mode, no possibility for conflicts
« Multiple applications could switch to kernel mode

« For instance, processes want to do I/O or communicate
« System calls will switch to kernel mode and access the same OS region in parallel

« Potential for conflicts within the kernel due to shared buffers etc.

Michael Kuhn Operating System Concepts 14/39

Symmetric Multiprocessing Basics

« Parallel systems typically use symmetric multiprocessing (SMP)
« All processors and cores are treated equally by the operating system
« Applications can run on all processors in SMP systems

« Processors can access the same code and data and enter the OS at the same time
« It is necessary to have appropriate locks to avoid race conditions and deadlocks

« There is also asymmetric multiprocessing

« For instance, one processor executes an application while the other runs the OS

Michael Kuhn Operating System Concepts 15/39

Outline

Operating System Concepts
Review
Introduction
Basics
Concurrency and Parallelism
Operating System Internals

Summary

Concurrency Concurrency and Parallelism

« Operating system runs concurrently
« Definition: Different parts can be executed out-of-order or in partial order

« “Two distinct events a and b are said to be concurrent if a » b and b -+ a” [Lamport, 1978]
- “Two events are concurrent if neither can causally affect the other” [Lamport, 1978]

« Enables parallelism, since concurrent parts can be executed in parallel
 Synchronization is necessary to avoid race conditions

« Can be achieved using different means, explicitly and implicitly
« Locks are most common but there are also barriers etc.

« Lockless algorithms promise better performance than other approaches

Michael Kuhn Operating System Concepts 16/39

Concu rrency... Concurrency and Parallelism

» Naive approach: Giant lock

+ Used in the beginning of parallel operating systems
« Implies that only one core can enter kernel mode at a time
+ Massive performance bottleneck, see Python’s global interpreter lock (GIL)

« Other extreme: Many fine-granular locks

« Increases concurrency but also overhead due to locking

« Harder to implement correctly than giant lock

» Goal: Find right granularity in between these two extremes

Michael Kuhn Operating System Concepts 17/39

Concu rrency... Concurrency and Parallelism

 Achieving thread-safety took years for Linux

« First versions in 1999 with fine-grained locks for signal handling, interrupts and 1/0
« Improved support in 2001 (version 2.4)

« “All major Linux subsystems are fully threaded” [Tumenbayar, 2002]

« Including networking, file system, virtual memory, 1/0, caches, scheduling etc.
« Optimizations are still routinely performed

- For instance, allowing systems to scale with more cores

« File system and memory accesses have to deal with more processes

Michael Kuhn Operating System Concepts 18/39

Synchronization Concurrency and Parallelism

 Locks implement mutual exclusion
« That is, only one task can enter the critical region
« A mutual exclusion lock is also called mutex

« Spinlocks are a way to implement locks

« Lock regions using a shared variable
« Lock availability is checked by testing in a loop (spinning)
« Only makes sense for locks that are only held for a short time

« We will see an example of a spinlock later

Michael Kuhn Operating System Concepts 19/39

Synch ronization... Concurrency and Parallelism

« Semaphors are data structures for synchronization
« Critical regions can be implemented using them
» More generic than a lock, which can only be set or unset
« Semaphors usually implement counting
« Vto increment, P to decrement
+ The semaphor’s value is the number of free resources
« wait (P): Wait for a free resource, decrement value by 1 and sleep (without consuming
CPU time) if new value is negative
- signal (V): Signal free resource availability, increment value by 1 and wake up task if

old value was negative

Michael Kuhn Operating System Concepts 20/39

Synch ronization... Concurrency and Parallelism

« Lockless algorithms promise high performance

+ Most often achieved using atomic operations
« Typically some standard atomic operations are provided

- Store, load and exchange
« Compare-and-exchange and test-and-set
« Fetch-and-{add,sub,and,or,xor}

» Requires hardware support

« Separate instructions provided by the processor

« C11 allows checking with atomic_is_lock_free

Michael Kuhn Operating System Concepts 21/39

Outline

Operating System Concepts
Review
Introduction
Basics
Concurrency and Parallelism
Operating System Internals

Summary

Processes Operating System Internals

» Reminder: Source code is compiled to an application

« Application can be started multiple times
« Each running instance of an application is called a process

+ Processes are assigned a unique process ID (PID)
« They also have a parent process, a thread group and more
« The PID is important when using system-level tools etc.

« Killing processes using kill requires the PID
« Log entries typically contain the PID for correlation

Michael Kuhn Operating System Concepts 22/39

Process ID

« The process’s PID is returned by getpid

getppid returns the parent’s PID

« Parent PID depends on how process is started

Michael Kuhn

Typically the shell’s PID

Limit can be read from
/proc/sys/kernel/pid_max

On current systems it is 4,194,304 (that is, 22%) :
Used to be 32,768 (that is, 2'°) :
PIDs wrap around after reaching the maximum

1
2

3

4

5

e The amount of PIDs is limited 6
7

8

9

Q

1

Operating System Concepts

Operating System Internals

int main(void) {

pid_t pid, ppid;

pid = getpid();
ppid = getppid();

printf("pid=%d,

pid,

return 0;

ppid);

ppid=%d\n",

23/39

Starting Processes Operating System Internals

« Starting new processes can be complicated

« Application’s code has to be loaded into main memory
« Data structures have to be set up and initialized
« Library dependencies have to be loaded (recursively)

+ Most of the complexity is hidden from users

« Simply type app or ./app into the shell

« Shell and operating system have to take care of all necessary steps

« Programming languages provide functionality to start new processes
« High-level functionality like system
« system("ls -1h /") just does the right thing

« Low-level functionality like Python’s subprocess

Michael Kuhn Operating System Concepts 24/ 39

Fork Operating System Internals

1 int main(void) {
2 pid_t pid, ppid, fork_pid;
» fork starts a new process 3
« The parent ID is that of the original process 4 Fortejple = erki) s
« fork returns the new process’s PID > pid = getpid();
. o 6 ppid = getppid();
« The new process is a copy of the original one 7
« Execution resumes at the fork call 8 printf("pid=%d, ppid=%d,"
+ Otherwise, processes are independent 9 " fork_pid=%d\n",
. Starting other applications needs one more step '’ pid, ppid, fork_pid);
11
« exec starts another application 13 return o
13 | %

Michael Kuhn Operating System Concepts 25/39

Fork

Operating System Internals

» fork starts a new process

« The parent ID is that of the original process
« fork returns the new process’s PID

« The new process is a copy of the original one

« Execution resumes at the fork call

+ Otherwise, processes are independent

« Starting other applications needs one more step

« exec starts another application

Michael Kuhn

Operating System Concepts

pid=140226, ppid=139580,
— fork_pid=140227

pid=140227, ppid=140226,
— fork_pid=0

25/39

Exec

Operating System Internals

« execve replaces current application
« execl etc. are wrappers for execve
+ Usual way to start new processes

« For instance, shell forks and executes new

application such as 1s or find
« Have to make sure to close files etc.

« Some resources are inherited by new process
« File descriptors can be marked close-on-exec

Michael Kuhn Operating System Concepts

o N O g A w N =

10
11
12
13
14
15

int main(void) {
pid_t fork_pid = fork();
if (fork_pid == 0) {
execl("/usr/bin/1s",
"1s", NULL);
} else {
int status;
waitpid(fork_pid,
&status, 0);
printf (" fork_pid=%d,"
" status=%d\n",
fork_pid, status);
}

return 0;

26/39

Exec Operating System Internals

« execve replaces current application
« execl etc. are wrappers for execve

+ Usual way to start new processes cloneo@

. clone®@.c
« For instance, shell forks and executes new

application such as 1s or find o)
fork_pid=38843, status=0
« Have to make sure to close files etc.

« Some resources are inherited by new process

« File descriptors can be marked close-on-exec

Michael Kuhn Operating System Concepts 26/39

Exec... Operating System Internals

$ pstree

systemd-+-NetworkManager ---2x[{NetworkManager }]
« All processes are forked l=coc
|-systemd-+-(sd-pam)
| [=0oc

|-systemd-journal

o init is started by the kernel
« Typically systemd

(check /sbin/init) |-systemd-logind

+ Responsible for bringing up |-systemd-machine
and down the system | -systemd-oomd
« Special signal handling |-systemd-resolve

. | -systemd-udevd
 Processes without a parent
|-systemd-userdbd---3x[systemd-userwor]

are adopted by init

Michael Kuhn Operating System Concepts 27/39

Process Information Operating System Internals

1 $ 1s -1 /proc/$$/fd

2 | lrwx------ . 1 user group 64 Nov 29 00:33 @ -> /dev/pts/2
3 |lrwx------ . 1 user group 64 Nov 29 00:33 1 -> /dev/pts/2
4 lrwx------ . 1 user group 64 Nov 29 00:33 2 -> /dev/pts/2

+ /proc/PID contains information about specific processes
« The fd directory contains all open file descriptors
« File descriptors 0, 1 and 2 are standard input, output and error

« Also available: Current working directory (cwd), environment variables (environ),
application (exe) and much more

Michael Kuhn Operating System Concepts 28/39

Shared Memory

 Threads within a process can access the same variables

« Processes are isolated from each other
« Processes still might have to communicate with each other

« See Python’s multiprocessing module, which is implemented using processes
» Portable Operating System Interface (POSIX) defines functionality for this

« It also covers most aspects shown previously

Michael Kuhn Operating System Concepts 29/39

Shared Memory...

1 int main(void) {
2 pid_t pid = getpid();
« Separate process address spaces 3 int fd = shm_open("/shm",
« No access to shared variables for 4 O_RDWR | O_CREAT, 0600);
communication or synchronization ° if (fork() == 0) {
. 6 writeall (fd, &pid);
« Shared memory objects Pur (P ,
7 printf ("pid=%d\n", pid);
+ Behave like normal file descriptors ¢ 1 else {
« Usually implemented as normal 9 sleep(1);
files in /dev/shm (tmpfs) 10 preadall (fd, &pid);
- mmap allows implicit access 11 printf ("forked_pid=%d\n", pid);
. 12 3
« shm_x functions can be used to)
13 shm_unlink ("/shm");
manage shared memory objects 14 return 0
15 |3

Michael Kuhn Operating System Concepts 30/39

Shared Memory...

« Separate process address spaces
« No access to shared variables for
communication or synchronization
« Shared memory objects
pid=40458
forked_pid=40458

« Behave like normal file descriptors
« Usually implemented as normal
files in /dev/shm (tmpfs)
- mmap allows implicit access
« shm_x functions can be used to

manage shared memory objects

Michael Kuhn Operating System Concepts 30/39

Limits

Operating System Internals

« Linux limits resource usage by default s

« This includes the number of processes, the

size of the stack etc.

+ Can be shown and modified using ulimit

« ulimit -a gives an overview of all limits

-n:

« Limits have a soft and a hard limit

« Users cannot increase above hard limit

« Limits are per-process

Michael Kuhn

=1l g

Operating System Concepts

cpu time (seconds)

stack size (kbytes)

processes
file descriptors

pending signals

unlimited

8192

125835
1024

125835

31/39

File DeSCI‘iptOI‘S Operating System Internals

int main(void) {
int fd;

for (int i = 0; i < 1024; i++) {
fd = open("fd.c", O_RDONLY);

1
2
3
4
« Maximum for file descriptors is 1,024 5
6 if (fd == -1) {
7
8
9
0

« Cannot open more files afterwards
.) printf ("error=%s\n",
« Only applies to currently open files strerror(errno)):

« Closing files alleviates the problem return 1;

3
printf ("Opened file %d.\n", 1i);

« Reached easily in parallel programs

. 11
« For example, each thread opens files .

}
13
14 return 0;
15 |}

Michael Kuhn Operating System Concepts 32/39

File Descriptors

Operating System Internals

. . i . Opened file 0.
« Maximum for file descriptors is 1,024 ‘
Opened file 1.
« Cannot open more files afterwards Opened file 2.
+ Only applies to currently open files 20¢
. : . 0 d file 1018.
+ Closing files alleviates the problem pened Ti-€
Opened file 1019.
+ Reached easily in parallel programs roened Pals 1620,
« For example, each thread opens files error=Too many open files

Michael Kuhn Operating System Concepts

32/39

Quiz

Operating System Internals

Opened
Opened
« Why were we able to open only 1,021 files? Opened
1. Some file descriptors reserved for safety e
2. Three file descriptors open from the start Opened
. . ; . Opened
3. 1,021 is the hard limit for file descriptors
Opened

file
file
file

file
file
file

1018.
1019.
1020.

error=Too many open files

Michael Kuhn Operating System Concepts

33/39

Stack Operating System Internals

« Stack size limited to 8 MiB

. malloc is thread-safe

« Can be significant with many threads 1 void rec(int depth) {
« Each thread gets its own stack 2 printf("depth=%d\n", depth);
« Stack size can be set for each thread 3) rec(depth + 1);
4
+ Might make sense to limit the size if many .
thl"eads are running 6 int main(void) {
« Heap is shared between all threads 7 rec(0);
8 return 0;
9

Michael Kuhn Operating System Concepts 34/39

Stack Operating System Internals

« Stack size limited to 8 MiB

« Can be significant with many threads
« Each thread gets its own stack 5006
depth=261754
depth=261755

depth=261756
threads are running depth=261757

« Stack size can be set for each thread

« Might make sense to limit the size if many

« Heap is shared between all threads depth=261758

o mElae s dhmeadkeeli segmentation fault (core dumped)

Crashes after ca. 260,000 steps
« Around 32 bytes stack memory per step

Michael Kuhn Operating System Concepts 34/39

Processes vs. Threads Operating System Internals

 Functionality presented so far allows starting new processes
« Control is quite limited using fork and exec
» How do we start new threads?

« Using established interfaces like OpenMP and POSIX Threads
« We will still take a deeper look to understand the internals

« Linux has a clone system call that offers more control

« This is also used to implement POSIX Threads semantics

Michael Kuhn Operating System Concepts 35/39

Clone Operating System Internals

1 int main(void) {
2 int status;
3 pid_t pid;
« clone allows creating new processes 4
« Offers more control than fork 5 clone(func,
. . . 6 stack + sizeof(stack),
« Address space, file descriptors and signal . STGCHLD ,
handlers can be shared 8 "Hello world."):
« Allows placing processes in namespaces 9 Dl = e e s Tausor
« Allows specifying function to execute 10 printf("pid=%d, cpid=%d, "
« Stack has to be managed manually 1 - SEAEISSAENN
12 getpid(), pid,
« There is a newer clone3 system call 13 WEXITSTATUS (status));
14 return 0;
15 | 3

Michael Kuhn Operating System Concepts 36/39

Clone Operating System Internals

1 char stack[1024 *x 1024];
2
« clone allows creating new processes 3 int func(voids arg) {
« Offers more control than fork 4 printf("%s\n", (charx)arg);
« Address space, file descriptors and signal 5 printf("pid=%d\n",
handlers can be shared g getpid());
. . 7 return 42;
« Allows placing processes in namespaces
8 3
« Allows specifying function to execute
« Stack has to be managed manually Hello world.
 There is a newer clone3 system call pid=48472

pid=48471, cpid=48472, status=42

Michael Kuhn Operating System Concepts 36/39

Clone... Operating System Internals

1 int main(void) {
2 clone (func,
« clone can also be used for threads
3 stack + sizeof(stack),

« Process is placed in the same thread group 4 CLONE_THREAD

o Shares PID Wlth parent process 5 | CLONE_SIGHAND

« Has a separate thread ID (TID) 6 | CLONE_VM,
« Semantics for POSIX Threads 7 "Hello world.");

. 8 hil tomic_load (&lock

« Otherwise, threads could have own PIDs . e ‘i—(Z) omic_load(&lock)
+ clone is very specialized 10 P2 IO pHE=Rm”

« Only use if you know what you are doing 1 getpid());

« Examples most likely contain bugs (no 12

thread-local storage etc.) 13 return 0;
14 |3}

Michael Kuhn Operating System Concepts 37/39

Clone...

Operating System Internals

« clone can also be used for threads

« Process is placed in the same thread group
« Shares PID with parent process
« Has a separate thread ID (TID)

« Semantics for POSIX Threads

« Otherwise, threads could have own PIDs

« clone is very specialized

Michael Kuhn

S W 6 N O U~ W N =

—_

+ Only use if you know what you are doing

« Examples most likely contain bugs (no

thread-local storage etc.)

Operating System Concepts

char stack[1024 * 10247;
atomic_int lock = 0;

int func(voidx arg) {
printf("%s\n", (charx*)arg);
printf ("pid=%d\n",
getpid());
atomic_store(&lock, 1);
return 42;

Hello world.
pid=50663
pid=50663

37/39

Threads vs. Processes Operating System Internals

mm 0 MB
I 2 MB
© mmm 4MB
8 MB
« Starting threads is significantly ®
faster than starting processes gw
« 5ps vs. more than 20 ps £
+ Threads share address space £
« No copies necessary »

+ Processes copy virtual memory

. Changes are copy—on—write _
0

thread fork

[Bendersky, 2018]

Michael Kuhn Operating System Concepts 38/39

Outline

Operating System Concepts
Review
Introduction
Basics
Concurrency and Parallelism
Operating System Internals

Summary

Summary Summary

Parallel programming often requires low-level knowledge

« Having a basic understanding of operating system concepts is necessary

Privileged operations have to be performed in kernel mode
« Switching to kernel mode can be expensive
« Modern operating systems are thread-safe and reentrant

« Can execute applications and system calls in parallel

There are performance characteristics and resource limits to keep in mind

« Threads are typically faster to spawn than processes

Michael Kuhn Operating System Concepts 39/39

References

[Bendersky, 2018] Bendersky, E. (2018). Launching Linux threads and processes with clone.
https:
//eli.thegreenplace.net/2018/1launching-1linux-threads-and-processes-with-clone/.

[Lamport, 1978] Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558-565.

[Linux man-pages project, 2021] Linux man-pages project (2021). strerror(3).
https://man7.org/linux/man-pages/man3/strerror.3.html.

[Sven, 2006] Sven (2006). This explains the CPU ring scheme.
https://en.wikipedia.org/wiki/File:CPU_ring_scheme.svg.

[Tumenbayar, 2002] Tumenbayar, E. (2002). Linux SMP HOWTO.
https://tldp.org/HOWTO/SMP-HOWTO-3.html.

https://eli.thegreenplace.net/2018/launching-linux-threads-and-processes-with-clone/
https://eli.thegreenplace.net/2018/launching-linux-threads-and-processes-with-clone/
https://man7.org/linux/man-pages/man3/strerror.3.html
https://en.wikipedia.org/wiki/File:CPU_ring_scheme.svg
https://tldp.org/HOWTO/SMP-HOWTO-3.html

Daemon

+ Processes part of process group and session
« Process group is sent SIGHUP when session
leader terminates
« Shell is usually the session leader
« fork and setsid for daemons

 setsid makes process session leader
+ Leader can run in the background

o N O g hA W N =

11

12
13
14

Operating System Internals

int main(void) {

pid_t pid, ppid;

if (fork() == 0) {
setsid();

3

pid = getpid();

ppid = getppid();

printf("pid=%d, ppid=%d, "
"sid=%d\n",
pid, ppid, getsid(0));

return 0;

Daemon Operating System Internals

+ Processes part of process group and session

+ Process group is sent SIGHUP when session
'eadefterm‘”ates . pid=38378, ppid=6865, sid=6865
« Shell is usually the session leader pid=38379, ppid=38378, sid=38379

« fork and setsid for daemons

 setsid makes process session leader
+ Leader can run in the background

	Operating System Concepts
	Review
	Introduction
	Basics
	Concurrency and Parallelism
	Operating System Internals
	Summary

	Appendix
	References
	

	Bonus
	Operating System Internals

