
Introduction

Parallel Programming
2024-10-14

Prof. Dr. Michael Kuhn
michael.kuhn@ovgu.de

Parallel Computing and I/O
Institute for Intelligent Cooperating Systems
Faculty of Computer Science
Otto von Guericke University Magdeburg
https://parcio.ovgu.de

mailto:michael.kuhn@ovgu.de
https://parcio.ovgu.de


Outline

Introduction

Organization

Lecture

Exercises

Outlook

Summary



Survey Organization

• How familiar are you with C?
1. Expert
2. Advanced
3. Beginner
4. Not at all

Michael Kuhn Introduction 1 / 43



Survey Organization

• How familiar are you with Linux?
1. Expert
2. Advanced
3. Beginner
4. Not at all

Michael Kuhn Introduction 1 / 43



Survey Organization

• How familiar are you with Git?
1. Expert
2. Advanced
3. Beginner
4. Not at all

Michael Kuhn Introduction 1 / 43



Lecture and Exercises Organization

• Lecture: Mondays, 15:15–16:45
• Foundation and background of parallel programming
• We will also use this time slot to clear up questions etc.

• Exercises: Tuesdays, 9:15–10:45 and 11:15–12:45
• Practical exercises about parallel programming
• We will discuss solutions and take a look at the next exercise sheet

• Exam: Written

Michael Kuhn Introduction 2 / 43



Communication Organization

• Please sign up for the Mattermost team
• If there are questions about the lecture or exercises, please ask them there
• Feel free to use it for discussion and communication with your fellow students

• You can also use it to find people for your exercise group

• You can of course also send us e-mails:

• michael.kuhn@ovgu.de (lecture and general)
• michael.blesel@ovgu.de (exercises)

• Slides, exercise sheets etc. will be available on the website

Michael Kuhn Introduction 3 / 43

mailto:michael.kuhn@ovgu.de
mailto:michael.blesel@ovgu.de


Literature Organization

• High Performance Computing: Modern Systems and Practices (Thomas Sterling,
Matthew Anderson and Maciej Brodowicz)

• Parallel Programming: for Multicore and Cluster Systems (Thomas Rauber and
Gudula Rünger) (e-book at UB)

• Parallel Programming: Concepts and Practice (Dr. Bertil Schmidt, Dr. Jorge
Gonzalez-Dominguez, Christian Hundt and Moritz Schlarb) (book at UB)

Michael Kuhn Introduction 4 / 43



Outline

Introduction

Organization

Lecture

Exercises

Outlook

Summary



Topics Lecture

• Introduction (today ⌣)
• A brief overview of some topics we will cover in the lecture
• This is an outlook, no need to understand everything immediately

• Performance Analysis and Optimization
• How to measure performance correctly and identify relevant components
• Math, code and compiler optimizations

• Hardware Architectures
• Differences between shared and distributed memory
• Non-uniform memory access

Michael Kuhn Introduction 5 / 43



Topics. . . Lecture

• Parallel Programming
• How to parallelize problems
• Potential problems and new kinds of errors

• Programming with OpenMP
• High-level parallelization using compiler annotations
• Loops, tasks, synchronization etc.

• Operating System Concepts
• Differences between processes and threads
• Shared memory regions, I/O, scheduling etc.

Michael Kuhn Introduction 6 / 43



Topics. . . Lecture

• Programming with POSIX Threads
• Low-level parallelization using library functions
• Thread creation, joining, synchronization, condition variables etc.

• Programming with MPI
• Parallelization using the Message Passing Interface
• Communication, I/O, collective operations etc.

• Networking and Scalability
• Performance metrics for network technologies and topologies
• Scalability considerations for large systems

Michael Kuhn Introduction 7 / 43



Topics. . . Lecture

• Advanced MPI and Debugging
• Advanced concepts for message passing applications (such as RMA)
• How to debug parallel programs using multiple threads and processes

• Guest Lecture
• How parallelism is used in real-world applications

• Parallel I/O
• Why parallel I/O is needed in parallel applications
• Architecture of parallel distributed file systems

• Research Talks
• Research topics currently investigated in our group

Michael Kuhn Introduction 8 / 43



Outline

Introduction

Organization

Lecture

Exercises

Outlook

Summary



Overview Exercises

• Exercises will consist of parallel programming in C
• Trying out the concepts taught in the lecture

• You should have experience in a programming language
• Experience in C is not necessary (but helps)

• We will work mostly on our cluster via SSH
• Logging in and setting everything up will be part of the first exercise

Michael Kuhn Introduction 9 / 43



Topics Exercises

• Introduction and setup
• Log in to cluster, set up software environment etc.

• Debugging
• Using GDB, Valgrind etc.

• Performance optimization
• Optimizing a serial application

• Parallelizing with OpenMP and parallelization schema
• Preparing a parallelization schema for the serial application
• Parallelizing the optimized application with OpenMP

Michael Kuhn Introduction 10 / 43



Topics. . . Exercises

• Parallelizing with POSIX Threads
• Parallelizing the optimized application with POSIX Threads

• Introduction to MPI
• Getting familiar with the Message Passing Interface

• Parallelizing with MPI (Jacobi)
• Parallelizing the optimized application with MPI

• Parallelizing with MPI (Gauß-Seidel)
• Parallelizing the optimized application with MPI

Michael Kuhn Introduction 11 / 43



Outline

Introduction

Organization

Lecture

Exercises

Outlook

Summary



Motivation Outlook

• Parallel programming is an important skill
• Processors feature an increasing amount of cores
• Even current phones have eight cores

• Serial applications will not be able to fully utilize a machine
• Except for cases we call trivial parallelization
• Sometimes possible to run multiple serial applications in parallel

• Parallelization is very important in science
• Many problems can only be solved on supercomputers
• High-performance computing (HPC)

Michael Kuhn Introduction 12 / 43



Performance Analysis and Optimization Outlook

• It is difficult to measure performance correctly
• There are many factors and components to consider
• Performance is influenced by caching, network, input/output (I/O) etc.
• Errors can influence or even invalidate all results

• Optimization requires deep knowledge of the hardware
• How do the different levels of caches interact?
• Can we reach the main memory from all cores with the same speed?
• How does our application behave with more cores?

Michael Kuhn Introduction 13 / 43



Performance Analysis and Optimization. . . Outlook

• There are also technical issues to take into account
• HPC applications are typically run via a batch scheduler
• Operating system services can influence performance

• Measuring performance can be hard
• Which components are involved and have to be measured?
• Which performance can we expect on a given system?

Michael Kuhn Introduction 14 / 43



Hardware Architectures Outlook

• Until ca. 2005: Performance increase via clock rate
• Going from n GHz to 2n GHz will usually double application performance

• Since ca. 2005: Performance increase via core count
• Clock rate cannot be increased further
• Power consumption/heat depends on clock rate
• Biggest supercomputers on TOP500 list have more than 10,000,000 cores

• Important classification: Memory access model
• Shared and distributed memory
• In reality, typically hybrid systems

Michael Kuhn Introduction 15 / 43



Hardware Architectures. . . Outlook

• All processors have access to shared memory
• There might be speed differences due to NUMA

• Typically refers to single machines
• Shared memory can also be virtual

• Processors consist of multiple cores
• Each core has its own caches
• Shared cache for the whole processor

• Access to shared memory via a bus
• This also limits scalability of shared memory

Cache

Processor

Bus

Main Memory

Cache

Processor

Michael Kuhn Introduction 16 / 43



Hardware Architectures. . . Outlook

• Processors only have access to own memory
• Typically with shared memory architecture

• Typically refers to a cluster of machines
• Could theoretically be used inside machine

• Machines are connected via a network
• Determines scalability and performance
• Different network technologies and topologies Network

Cache

Processor

Bus

Main Memory

Cache

Processor

Cache

Processor

Bus

Main Memory

Cache

Processor

Michael Kuhn Introduction 17 / 43



Parallel Programming Outlook

• Parallel programming is used to increase application performance
• In HPC, OpenMP and MPI are often used together

• OpenMP is an interface for shared memory
• Applications run as multiple threads within a single process
• OpenMP features thread management, task scheduling, synchronization and more

• MPI (Message Passing Interface) is an interface for distributed memory
• Applications run distributed over multiple compute nodes
• MPI features message passing, input/output and other functions

• Both approaches are available for multiple programming languages

Michael Kuhn Introduction 18 / 43



Parallel Programming. . . Outlook

• Numerical problems are mostly iterative
• Simulations often performed in time steps

• Global conditions for termination
• Run for a specified number of time steps

• Data structures are often regular
• Data often stored in one or more matrices

• Many phenomena are highly parallel
• Galaxies, planets, climate and weather

• Parallel computing is well-suited
• Data and components can be distributed

[NOAA, 2007]

Michael Kuhn Introduction 19 / 43



Parallel Programming. . . Outlook

Process X
Code, Memory, Files

Thread 0 Thread 1 Thread 2
Memory Memory Memory

.

.

.
.
.
.

.

.

.

• We will only take a look at threads for now
• Message passing will be covered later

• Processes are instances of an application
• Applications can be started multiple times
• Processes are isolated from each other by the operating system
• Resources like allocated memory, opened files etc. are managed per-process

• Threads are lightweight processes
• Threads have their own stacks but share all other resources
• Shared access to resources has to be synchronized
• Uncoordinated access can lead to errors very easily

Michael Kuhn Introduction 20 / 43



Parallel Programming. . . Outlook

• Threads share a common address space
• Communication is often done via shared variables
• Threads are processed independently, that is, in parallel
• If one thread crashes, the process crashes with all threads

• Processes have their own address spaces
• Typically have to start multiple processes for distributed memory
• Overhead is normally higher than with shared memory
• There are also concepts for distributed shared memory

• In practice, hybrid approaches are used
• A few processes per node (e. g., one per socket)
• Many threads per process (e. g., one per core)

Michael Kuhn Introduction 21 / 43



Parallelization with OpenMP Outlook

• Numerical applications often deal with matrices
• Matrices are as big as the main memory allows
• We want to calculate the sum of all elements

• Have to go through all rows and columns
• Process one element after the other

(0,0) (0,1) ... (0,n-1) (0,n)
... ... ... ... ...

(m,0) (m,1) ... (m,n-1) (m,n)

1 for (int i = 0; i < m; i++) {

2 for (int j = 0; j < n; j++) {

3 sum += arr[i][j];

4 }

5 }

Michael Kuhn Introduction 22 / 43



Parallelization with OpenMP. . . Outlook

• OpenMP allows parallelization using compiler pragmas
• Very convenient for developers, no internal knowledge necessary
• Reduced functionality when compared to system-level approaches

1 #pragma omp parallel for

2 for (int i = 0; i < m; i++) {

3 for (int j = 0; j < n; j++) {

4 sum += arr[i][j];

5 }

6 }

Michael Kuhn Introduction 23 / 43



Parallelization with OpenMP. . . Outlook

1 for (int i = 0; i < m/2; i++) {

2 for (int j = 0; j < n; j++) {

3 sum += arr[i][j];

4 }

5 }

1 for (int i = m/2; i < m; i++) {

2 for (int j = 0; j < n; j++) {

3 sum += arr[i][j];

4 }

5 }

• First for loop is split up across multiple threads
• Usually as many threads as there are cores
• OpenMP can also do dynamic distributions and further scheduling

• Example: Laptop with two cores
• First core calculates 0 to (m/2)-1

• Second core calculates m/2 to m-1

Michael Kuhn Introduction 24 / 43



Parallelization with OpenMP. . . Outlook

• This solution was very easy but also wrong ⌣

• Instead of the correct sum, we get weird values
• Every time we run the application, the result changes

• Shared memory makes it easy to access the sum variable
• Access has to be synchronized, otherwise errors occur
• We have produced a so-called race condition

• There are several possibilities to solve the problem
• Add a lock around the operation (slow)
• Use atomic instructions (fast)

1 $ ./ openmp

2 sum =3773725

3 $ ./ openmp

4 sum =4012997

5 $ ./ openmp

6 sum =12325088

7 $ ./ openmp

8 sum =2456866

9 $ ./ openmp

10 sum =11970989

11 $ ./ openmp

12 sum =2818054

13 $ ./ openmp

14 sum =3979092

Michael Kuhn Introduction 25 / 43



Parallelization with OpenMP. . . Outlook

• This solution was very easy but also wrong ⌣

• Instead of the correct sum, we get weird values
• Every time we run the application, the result changes

• Shared memory makes it easy to access the sum variable
• Access has to be synchronized, otherwise errors occur
• We have produced a so-called race condition

• There are several possibilities to solve the problem
• Add a lock around the operation (slow)
• Use atomic instructions (fast)

1 $ ./ openmp

2 sum =3773725

3 $ ./ openmp

4 sum =4012997

5 $ ./ openmp

6 sum =12325088

7 $ ./ openmp

8 sum =2456866

9 $ ./ openmp

10 sum =11970989

11 $ ./ openmp

12 sum =2818054

13 $ ./ openmp

14 sum =3979092

Michael Kuhn Introduction 25 / 43



Debugging Outlook

• Parallel programming has at least two new error classes
1. Deadlocks
2. Race conditions

• A race condition has resulted in a wrong result in our example
• Incrementing a variable consists of three operations

1. Loading the variable
2. Modifying the variable
3. Storing the variable

• Operations have to be performed atomically

T0 T1 V
Load 0 0
Inc 1 0
Store 1 1

Load 1 1
Inc 2 1
Store 2 2

T0 T1 V
Load 0 0
Inc 1 Load 0 0
Store 1 Inc 1 1

Store 1 1

Michael Kuhn Introduction 26 / 43



Debugging Outlook

• Parallel programming has at least two new error classes
1. Deadlocks
2. Race conditions

• A race condition has resulted in a wrong result in our example
• Incrementing a variable consists of three operations

1. Loading the variable
2. Modifying the variable
3. Storing the variable

• Operations have to be performed atomically

T0 T1 V
Load 0 0
Inc 1 0
Store 1 1

Load 1 1
Inc 2 1
Store 2 2

T0 T1 V
Load 0 0
Inc 1 Load 0 0
Store 1 Inc 1 1

Store 1 1

Michael Kuhn Introduction 26 / 43



Debugging Outlook

• Parallel programming has at least two new error classes
1. Deadlocks
2. Race conditions

• A race condition has resulted in a wrong result in our example
• Incrementing a variable consists of three operations

1. Loading the variable
2. Modifying the variable
3. Storing the variable

• Operations have to be performed atomically

T0 T1 V
Load 0 0
Inc 1 0
Store 1 1

Load 1 1
Inc 2 1
Store 2 2

T0 T1 V
Load 0 0
Inc 1 Load 0 0
Store 1 Inc 1 1

Store 1 1

Michael Kuhn Introduction 26 / 43



Debugging. . . Outlook

�

� �

�

• Deadlocks cause parallel applications to stop progressing
• Can have different causes, most often due to locking
• May not be reproducible if there is time-dependent behavior

• Error condition can be difficult to find
• Trying to lock an already acquired lock results in a deadlock
• Erroneous communication patterns (everyone waits for the right neighbor)

• Error effect is typically easy to spot
• Spinlocks or livelocks can look like computation, though

Michael Kuhn Introduction 27 / 43



Debugging. . . Outlook

• Race conditions can lead to differing results
• Debugging often hides race conditions

• Error condition is often very hard to find
• Can be observed at runtime or be found by static analysis
• Modern programming languages like Rust can detect data races

• Error effect is sometimes not observable
• Slight variations in the results are not obvious
• The correct result cannot be determined for complex applications
• Repeating a calculation can be too costly

Michael Kuhn Introduction 28 / 43



Networking Aspects Outlook

• Scalability of shared memory systems is limited
• Current processors feature up to 64 cores with 128 threads
• Typically two, at most four processors per node

• Computation is only one part of parallel applications
• They need to store data in main memory and persist it to storage
• Amount of main memory and storage per node is also limited

• To solve the biggest problems, we need distributed memory systems
• These typically consist of a cluster of shared memory systems
• Multiple nodes are connected via a so-called interconnect

Michael Kuhn Introduction 29 / 43



Networking Aspects. . . Outlook

• Processors require data fast
• 3 GHz equals three operations per nanosecond
• Even accessing the main memory is too slow
• Multiple cache levels hide main memory latency

• Network and I/O extremely slow in comparison
• Waiting for an HDD ruins performance
• SSDs have alleviated the problem a bit

Level Latency
L1 cache ≈ 1 ns
L2 cache ≈ 5 ns
L3 cache ≈ 10 ns

RAM ≈ 100 ns
InfiniBand ≈ 500 ns

Ethernet ≈ 100,000 ns
SSD ≈ 100,000 ns

HDD ≈ 10,000,000 ns

[Bonér, 2012] [Huang et al., 2014]

Michael Kuhn Introduction 30 / 43



Networking Aspects. . . Outlook

• Network topologies can get quite complex
• Easy: All nodes are connected to a single switch

• Larger systems use hierarchical topologies
• A fat tree has different throughputs depending

on the tree level

• Fat trees can also have blocking factor (2:1)
• Nodes in enclosure can communicate at 100 %
• Enclosures in rack can communicate at 50 %
• Racks can communicate at 25 % [A5b, 2010]

Michael Kuhn Introduction 31 / 43



Networking Aspects. . . Outlook

• Current network technologies feature high throughputs
• InfiniBand can do up to 600 GBit/s
• Ethernet can do up to 400 GBit/s
• There are more technologies like Intel’s Omni-Path

• Sophisticated approaches required to reach these high speeds
• Kernel bypass to save context switches
• Zero copy to avoid exhausting bus speeds

Michael Kuhn Introduction 32 / 43



Programming with MPI Outlook

• Parallel applications can be run across multiple nodes
• Typically as separate processes, requires message passing
• MPI is the de-facto standard

• MPI offers operations for communication and more
• Process groups and synchronization
• Sending, receiving, reduction etc.
• Point-to-point, collective or one-sided communication

• MPI also supports parallel I/O
• Concurrent access to shared files

Michael Kuhn Introduction 33 / 43



Programming with MPI. . . Outlook

• Parallel application now runs as two independent processes
• Processes can only see their own results, no shared memory
• There is no risk of overwriting other values as in the OpenMP example
• However, results have to be communicated between processes somehow

1 for (int i = 0; i < m/2; i++) {

2 for (int j = 0; j < n; j++) {

3 sum += arr[i][j];

4 }

5 }

1 for (int i = m/2; i < m; i++) {

2 for (int j = 0; j < n; j++) {

3 sum += arr[i][j];

4 }

5 }

Michael Kuhn Introduction 34 / 43



Programming with MPI. . . Outlook

• MPI allows us to perform efficient reduction operations
• A predefined reduction operation is the sum

1 MPI_Init(NULL , NULL);

2 for (int i = 0; i < m/2; i++) {

3 for (int j = 0; j < n; j++) {

4 sum += arr[i][j];

5 }

6 }

7 MPI_Allreduce (&sum , &allsum , 1,

8 MPI_INT , MPI_SUM ,

9 MPI_COMM_WORLD);

10 MPI_Finalize ();

1 MPI_Init(NULL , NULL);

2 for (int i = m/2; i < m; i++) {

3 for (int j = 0; j < n; j++) {

4 sum += arr[i][j];

5 }

6 }

7 MPI_Allreduce (&sum , &allsum , 1,

8 MPI_INT , MPI_SUM ,

9 MPI_COMM_WORLD);

10 MPI_Finalize ();

Michael Kuhn Introduction 35 / 43



Programming with MPI. . . Outlook

• Application code is typically still contained in one file
• MPI allows us to write a generic version of the application
• We can determine our rank and the number of processes

1 MPI_Init(NULL , NULL);

2 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

3 MPI_Comm_size(MPI_COMM_WORLD , &size);

4 for (int i = (m/size) * rank; i < (m/size) * (rank + 1); i++) {

5 for (int j = 0; j < n; j++) {

6 sum += arr[i][j];

7 }

8 }

9 MPI_Allreduce (&sum , &allsum , 1, MPI_INT , MPI_SUM , MPI_COMM_WORLD);

10 MPI_Finalize ();

Michael Kuhn Introduction 36 / 43



Scalability Outlook

• When writing parallel applications, we must consider scalability
• Scalability describes how an application behaves with increasing parallelism

• HPC systems are usually very expensive and should be used accordingly
• Procurement costs can reach up to € 250,000,000

• To determine scalability, we have to analyze performance
• HPC systems are complex, performance yield is often not optimal
• Many different components interact with each other

• Processors, caches, main memory, network, storage system etc.

Michael Kuhn Introduction 37 / 43



Scalability. . . Outlook

• In addition to procurement costs, operating is also quite expensive
• 1. Frontier (USA): 1.2 EFLOPS at 22.7 MW ≈ € 52,700,000/a (in Germany)
• 5. LUMI (Finland): 380 PFLOPS at 7.1 MW ≈ € 16,500,000/a (in Germany)
• 74. Levante (Germany): 10 PFLOPS at 2 MW ≈ € 4,600,000/a

• Communication and I/O are often responsible for performance problems
• High latency, which causes excessive waiting times for processors
• Communication and I/O typically happen synchronously

Michael Kuhn Introduction 38 / 43



Scalability. . . Outlook

• The performance improvement we get is called speedup
• In the best case, the speedup is equal to the number of threads
• In reality, the speedup is usually lower due to overhead

• Speedup can sometimes be higher than the number of threads
• This is called a superlinear speedup and usually points at a problem
• For example, each thread’s data suddenly fits into the cache

• This means that the measured problem became too small
• Larger problems will not fit and therefore have a lower speedup

Michael Kuhn Introduction 39 / 43



Parallel I/O Outlook

• Applications typically need input data and produce output data
• I/O is an important aspect and can be relevant for overall performance
• Without I/O, the results of a scientific application would be lost

• Applications often run for multiple days or weeks
• To cope with crashes, it is necessary to write checkpoints
• Jobs are often only allowed to run for a few hours at a time

• As mentioned before, storage devices have high latencies
• Waiting for I/O usually impacts performance negatively
• File systems try to cache data aggressively to hide latency

Michael Kuhn Introduction 40 / 43



Parallel I/O. . . Outlook

• Access via parallel distributed file systems
• Allow concurrent access from clients
• Distribute data across servers

• Clients can access a shared file
• Everyone can read input and write results
• Necessary for parallel applications

• Servers share the load
• Files are split up and distributed
• Use capacity and throughput of many servers

Data

Clients

Servers

File

Michael Kuhn Introduction 41 / 43



Parallel I/O. . . Outlook

• Computation and storage usually separated
• Can be optimized for respective workloads
• No interference of other components

• Clients run parallel applications
• Small local storage for OS and caching
• Access to the file system via the network
• No direct access to file system’s devices

• Servers store data and metadata
• Typically servers with many HDDs and SSDs

Network

Clients

Servers

Michael Kuhn Introduction 42 / 43



Outline

Introduction

Organization

Lecture

Exercises

Outlook

Summary



Summary Summary

• Parallel programming is an important skill
• Current computers always have multiple cores or processors

• Parallelization is used to improve performance
• It is necessary to understand the hardware and keep scalability in mind

• Shared memory and distributed memory are the two main architectures
• Threads can be used for shared memory systems
• Message passing is often used for distributed memory systems

• Parallel applications can have deadlocks and race conditions
• These errors can be hard to find and non-deterministic

Michael Kuhn Introduction 43 / 43



References

[A5b, 2010] A5b (2010). Fat tree topology of networks.
https://commons.wikimedia.org/wiki/File:Fat-tree1.svg.

[Bonér, 2012] Bonér, J. (2012). Latency Numbers Every Programmer Should Know.
https://gist.github.com/jboner/2841832.

[Huang et al., 2014] Huang, J., Schwan, K., and Qureshi, M. K. (2014). NVRAM-aware Logging
in Transaction Systems. Proc. VLDB Endow., 8(4):389–400.

[NOAA, 2007] NOAA (2007). Schematic for Global Atmospheric Model.
https://celebrating200years.noaa.gov/breakthroughs/climate_model/

AtmosphericModelSchematic.png.

https://commons.wikimedia.org/wiki/File:Fat-tree1.svg
https://gist.github.com/jboner/2841832
https://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModelSchematic.png
https://celebrating200years.noaa.gov/breakthroughs/climate_model/AtmosphericModelSchematic.png

	Introduction
	Organization
	Lecture
	Exercises
	Outlook
	Summary

	Appendix
	References
	



