Memory Organization

Compiler Construction
2024-12-03

A

OTTO VON GUERICKE

UNIVERSITAT
MAGDEBURG

Prof. Dr. Michael Kuhn

michael.kuhn@ovgu.de

Parallel Computing and 1/0

Institute for Intelligent Cooperating Systems
Faculty of Computer Science

Otto von Guericke University Magdeburg
https://parcio.ovgu.de

mailto:michael.kuhn@ovgu.de
https://parcio.ovgu.de

Outline

Memory Organization
Overview
Memory Allocation

Summary

Memory Organization

+ Program memory is typically segmented
« Segments include code, data, heap and stack

« Memory is allocated in pages (of typically 4 KiB)

Michael Kuhn Memory Organization

Overview

Outline

Memory Organization
Overview
Memory Allocation

Summary

Group Exercise

Memory Allocation

« Draw chunks and page boundaries after each allocation with a page size of 4,000

bytes and an initial heap of one page.

int* ptri
int* ptr2
int* ptr3

o O A w N =

Michael Kuhn

free(ptr3);
free(ptr2);
free(ptrl);

malloc (76);
malloc (9976);
malloc (76);

Memory Organization

Group Exercise

Memory Allocation

« Draw chunks and page boundaries after each allocation with a page size of 4,000

Michael Kuhn

bytes and an initial heap of one page.

100 | (3,900)
100 | 3,900 || 4,000 || 2,100 | (1,900)
100 | 3,900 || 4,000 || 2,100 | 100 | (1,800)

Memory Organization

Group Exercise

O 00 N O O A W N =

Memory Allocation

« Draw chunks and page boundaries after each allocation, the loop and each

deallocation with a page size of 4,000 bytes and an initial heap of one page.

intx ptr1 = malloc(76);
intx ptr2 = malloc(9976);

for (int i = @

;01 < 20; i++) {
ptr1[i] = 0;

}

free(ptr2);
free(ptril);

Michael Kuhn Memory Organization

Group Exercise

Memory Allocation

« Draw chunks and page boundaries after each allocation, the loop and each

Michael Kuhn

deallocation with a page size of 4,000 bytes and an initial heap of one page.

100 | (3,900)

100 | 3,900 || 4,000 || 2,100 | (1,900)
100 | (3,900) || 4,000 || 2,100 | (1,900)
100 ¢ 4,000 || 2,100 | (1,900)

Memory Organization

Group Exercise

o N O O hA W N =

o

10
11
12

Memory Allocation

« Draw chunks and page boundaries after each allocation, the loop and each

deallocation with a page size of 4,000 bytes and an initial heap of one page.

intx ptr1 = malloc(76);
intx ptr2 = malloc(9976);

for (int 1 = @; i < 20; i++) {
ptr1[i] = 0;
3

intx ptr3 = malloc(76);
free(ptr3);

free(ptr2);
free(ptrl);

Michael Kuhn Memory Organization

4/9

Group Exercise

Memory Allocation

« Draw chunks and page boundaries after each allocation, the loop and each

Michael Kuhn

deallocation with a page size of 4,000 bytes and an initial heap of one page.

100 | (3,900)

100 | 3,900 4,000 || 2,100 | (1,900)
100 | (3,900) 4,000 || 2,100 | (1,900)
100 | 100 | (3,800) || 4,000 || 2,100 | (1,900)

Memory Organization

4/9

Group Exercise

Memory Allocation

« Draw chunks and page boundaries at the program’s end with a page size of 4,000

int*
intx*
int*
intx*

int*

int*

S W 0 N O U A W N =

=

intx

Michael Kuhn

bytes for best fit, worst fit, first fit and next fit strategies. Count number of checks.

ptri
ptr2
ptr3
ptr4
ptr5

ptr4
ptr2

free(ptr2);
free(ptr4);
// Same unt

malloc (76);
malloc (976);
malloc (76);
malloc(76);
malloc (76);

il here (count checks starting here)

malloc (76);
malloc (976);

Memory Organization

Group Exercise Memory Allocation

« Draw chunks and page boundaries at the program’s end with a page size of 4,000

bytes for best fit, worst fit, first fit and next fit strategies. Count number of checks.

| 100 | (1000) | 100 | (100) | 100

Best fit (5 + 5):
100 | 1000 | 100 | 100 | 100 |

Worst fit (5 + 6):
| 100 | 100 | (900) | 100 | (100) | 100 | 1000

First fit (2 + 6):
| 100 | 100 | (900) | 100 | (100) | 100 | 1000

Next fit (2 + 4):
100 | 100 | (900) | 100 | (100) | 100 | 1000

Michael Kuhn Memory Organization

Group Exercise

« What happens on a system with 4 GiB RAM?

1 int* ptr1 = malloc (8000000000) ;

Michael Kuhn Memory Organization

Memory Allocation

6/9

Group Exercise Memory Allocation

« What happens on a system with 4 GiB RAM?

1 int* ptr1 = malloc (8000000000) ;

« Pages are typically only allocated when they are accessed (page fault)

» Touching pages when allocating a large chunk might be problematic

Michael Kuhn Memory Organization 6/9

Group Exercise

« What happens in the following code snippet?

1 int foo (int a) {
2 int bar[1];

3 bar[1] = 42;
4 bar[2] = 42;
5 bar[3] = 42;
6 3

Michael Kuhn Memory Organization

Memory Allocation

Group Exercise

« What happens in the following code snippet?

1 int foo (int a) {
2 int bar[1];

3 bar[1] = 42;
4 bar[2] = 42;
5 bar[3] = 42;
6 3

« bar[1] is outside the array and overwrites stack memory
» Might only be visible when stack smashing protection is enabled

- Different effects depending on data type (32 vs. 64 bits) etc.

Michael Kuhn Memory Organization

Memory Allocation

Group Exercise

Memory Allocation

« What happens with a limited or an unlimited stack?

1 int recinc (int a) {

2 return recinc(a + 1);
313

4 int main (void) {
5 recinc(0);
6

7

return 0;

Michael Kuhn Memory Organization

Group Exercise Memory Allocation

« What happens with a limited or an unlimited stack?

1 int recinc (int a) {

2 return recinc(a + 1);
313

4 int main (void) {

5 recinc(0);

6 return 0;

7

« Limited stack: Program crashes after a certain number of recursions

+ Unlimited stack: Program will likely be killed by out of memory killer

Michael Kuhn Memory Organization 8/9

Outline

Memory Organization
Overview
Memory Allocation

Summary

Summary

Summary

» Program memory is divided into logical segments

« Code and data are determined at compile time

« Heap and stack are controlled at runtime

« Page size influences overhead of page management
« Huge pages can help reduce overhead

« Heap and stack management can be fragile

« Overwriting metadata can lead to weird behavior or crashes

Michael Kuhn Memory Organization

References

[Thain, 2020] Thain, D. (2020). Introduction to Compilers and Language Design: Second
Edition. http://compilerbook.org/.

http://compilerbook.org/

	Memory Organization
	Overview
	Memory Allocation
	Summary

	Appendix
	References
	

