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Memory Organization Overview

• Program memory is typically segmented

• Segments include code, data, heap and stack

• Memory is allocated in pages (of typically 4 KiB)
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Group Exercise Memory Allocation

• Draw chunks and page boundaries after each allocation with a page size of 4,000
bytes and an initial heap of one page.

1 int* ptr1 = malloc (76);

2 int* ptr2 = malloc (9976);

3 int* ptr3 = malloc (76);

4 free(ptr3);

5 free(ptr2);

6 free(ptr1);
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Group Exercise Memory Allocation

• Draw chunks and page boundaries after each allocation with a page size of 4,000
bytes and an initial heap of one page.

100 (3,900)

100 3,900 4,000 2,100 (1,900)

100 3,900 4,000 2,100 100 (1,800)
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Group Exercise Memory Allocation

• Draw chunks and page boundaries after each allocation, the loop and each
deallocation with a page size of 4,000 bytes and an initial heap of one page.

1 int* ptr1 = malloc (76);

2 int* ptr2 = malloc (9976);

3 ...

4 for (int i = 0; i < 20; i++) {

5 ptr1[i] = 0;

6 }

7 ...

8 free(ptr2);

9 free(ptr1);
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Group Exercise Memory Allocation

• Draw chunks and page boundaries after each allocation, the loop and each
deallocation with a page size of 4,000 bytes and an initial heap of one page.

100 (3,900)

100 3,900 4,000 2,100 (1,900)

100 (3,900) 4,000 2,100 (1,900)

100 100 (3,800) 4,000 2,100 (1,900)
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Group Exercise Memory Allocation

• Draw chunks and page boundaries at the program’s end with a page size of 4,000
bytes for best fit, worst fit, first fit and next fit strategies. Count number of checks.

1 int* ptr1 = malloc (76);

2 int* ptr2 = malloc (976);

3 int* ptr3 = malloc (76);

4 int* ptr4 = malloc (76);

5 int* ptr5 = malloc (76);

6 free(ptr2);

7 free(ptr4);

8 // Same until here (count checks starting here)

9 int* ptr4 = malloc (76);

10 int* ptr2 = malloc (976);
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Group Exercise Memory Allocation

• Draw chunks and page boundaries at the program’s end with a page size of 4,000
bytes for best fit, worst fit, first fit and next fit strategies. Count number of checks.

100 (1000) 100 (100) 100

Best fit (5 + 5):

100 1000 100 100 100

Worst fit (5 + 6):

100 100 (900) 100 (100) 100 1000

First fit (2 + 6):

100 100 (900) 100 (100) 100 1000

Next fit (2 + 4):

100 100 (900) 100 (100) 100 1000
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Group Exercise Memory Allocation

• What happens on a system with 4 GiB RAM?

1 int* ptr1 = malloc (8000000000);

• Pages are typically only allocated when they are accessed (page fault)

• Touching pages when allocating a large chunk might be problematic
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Group Exercise Memory Allocation

• What happens in the following code snippet?

1 int foo (int a) {

2 int bar [1];

3 bar[1] = 42;

4 bar[2] = 42;

5 bar[3] = 42;

6 }

• bar[1] is outside the array and overwrites stack memory

• Might only be visible when stack smashing protection is enabled

• Different effects depending on data type (32 vs. 64 bits) etc.
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Group Exercise Memory Allocation

• What happens with a limited or an unlimited stack?

1 int recinc (int a) {

2 return recinc(a + 1);

3 }

4 int main (void) {

5 recinc (0);

6 return 0;

7 }

• Limited stack: Program crashes after a certain number of recursions

• Unlimited stack: Program will likely be killed by out of memory killer
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Summary Summary

• Program memory is divided into logical segments
• Code and data are determined at compile time
• Heap and stack are controlled at runtime

• Page size influences overhead of page management
• Huge pages can help reduce overhead

• Heap and stack management can be fragile
• Overwriting metadata can lead to weird behavior or crashes
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