
Memory Organization

Compiler Construction
2024-12-03

Prof. Dr. Michael Kuhn
michael.kuhn@ovgu.de

Parallel Computing and I/O
Institute for Intelligent Cooperating Systems
Faculty of Computer Science
Otto von Guericke University Magdeburg
https://parcio.ovgu.de

mailto:michael.kuhn@ovgu.de
https://parcio.ovgu.de


Outline

Memory Organization

Overview

Memory Allocation

Summary



Memory Organization Overview

• Program memory is typically segmented

• Segments include code, data, heap and stack

• Memory is allocated in pages (of typically 4 KiB)

Michael Kuhn Memory Organization 1 / 9



Outline

Memory Organization

Overview

Memory Allocation

Summary



Group Exercise Memory Allocation

• Draw chunks and page boundaries after each allocation with a page size of 4,000
bytes and an initial heap of one page.

1 int* ptr1 = malloc (76);

2 int* ptr2 = malloc (9976);

3 int* ptr3 = malloc (76);

4 free(ptr3);

5 free(ptr2);

6 free(ptr1);

Michael Kuhn Memory Organization 2 / 9



Group Exercise Memory Allocation

• Draw chunks and page boundaries after each allocation with a page size of 4,000
bytes and an initial heap of one page.

100 (3,900)

100 3,900 4,000 2,100 (1,900)

100 3,900 4,000 2,100 100 (1,800)

Michael Kuhn Memory Organization 2 / 9



Group Exercise Memory Allocation

• Draw chunks and page boundaries after each allocation, the loop and each
deallocation with a page size of 4,000 bytes and an initial heap of one page.

1 int* ptr1 = malloc (76);

2 int* ptr2 = malloc (9976);

3 ...

4 for (int i = 0; i < 20; i++) {

5 ptr1[i] = 0;

6 }

7 ...

8 free(ptr2);

9 free(ptr1);

Michael Kuhn Memory Organization 3 / 9



Group Exercise Memory Allocation

• Draw chunks and page boundaries after each allocation, the loop and each
deallocation with a page size of 4,000 bytes and an initial heap of one page.

100 (3,900)

100 3,900 4,000 2,100 (1,900)

100 (3,900) 4,000 2,100 (1,900)

100 E 4,000 2,100 (1,900)

Michael Kuhn Memory Organization 3 / 9



Group Exercise Memory Allocation

• Draw chunks and page boundaries after each allocation, the loop and each
deallocation with a page size of 4,000 bytes and an initial heap of one page.

1 int* ptr1 = malloc (76);

2 int* ptr2 = malloc (9976);

3 ...

4 for (int i = 0; i < 20; i++) {

5 ptr1[i] = 0;

6 }

7 ...

8 int* ptr3 = malloc (76);

9 ...

10 free(ptr3);

11 free(ptr2);

12 free(ptr1);

Michael Kuhn Memory Organization 4 / 9



Group Exercise Memory Allocation

• Draw chunks and page boundaries after each allocation, the loop and each
deallocation with a page size of 4,000 bytes and an initial heap of one page.

100 (3,900)

100 3,900 4,000 2,100 (1,900)

100 (3,900) 4,000 2,100 (1,900)

100 100 (3,800) 4,000 2,100 (1,900)

Michael Kuhn Memory Organization 4 / 9



Group Exercise Memory Allocation

• Draw chunks and page boundaries at the program’s end with a page size of 4,000
bytes for best fit, worst fit, first fit and next fit strategies. Count number of checks.

1 int* ptr1 = malloc (76);

2 int* ptr2 = malloc (976);

3 int* ptr3 = malloc (76);

4 int* ptr4 = malloc (76);

5 int* ptr5 = malloc (76);

6 free(ptr2);

7 free(ptr4);

8 // Same until here (count checks starting here)

9 int* ptr4 = malloc (76);

10 int* ptr2 = malloc (976);

Michael Kuhn Memory Organization 5 / 9



Group Exercise Memory Allocation

• Draw chunks and page boundaries at the program’s end with a page size of 4,000
bytes for best fit, worst fit, first fit and next fit strategies. Count number of checks.

100 (1000) 100 (100) 100

Best fit (5 + 5):

100 1000 100 100 100

Worst fit (5 + 6):

100 100 (900) 100 (100) 100 1000

First fit (2 + 6):

100 100 (900) 100 (100) 100 1000

Next fit (2 + 4):

100 100 (900) 100 (100) 100 1000
Michael Kuhn Memory Organization 5 / 9



Group Exercise Memory Allocation

• What happens on a system with 4 GiB RAM?

1 int* ptr1 = malloc (8000000000);

• Pages are typically only allocated when they are accessed (page fault)

• Touching pages when allocating a large chunk might be problematic

Michael Kuhn Memory Organization 6 / 9



Group Exercise Memory Allocation

• What happens on a system with 4 GiB RAM?

1 int* ptr1 = malloc (8000000000);

• Pages are typically only allocated when they are accessed (page fault)

• Touching pages when allocating a large chunk might be problematic

Michael Kuhn Memory Organization 6 / 9



Group Exercise Memory Allocation

• What happens in the following code snippet?

1 int foo (int a) {

2 int bar [1];

3 bar[1] = 42;

4 bar[2] = 42;

5 bar[3] = 42;

6 }

• bar[1] is outside the array and overwrites stack memory

• Might only be visible when stack smashing protection is enabled

• Different effects depending on data type (32 vs. 64 bits) etc.

Michael Kuhn Memory Organization 7 / 9



Group Exercise Memory Allocation

• What happens in the following code snippet?

1 int foo (int a) {

2 int bar [1];

3 bar[1] = 42;

4 bar[2] = 42;

5 bar[3] = 42;

6 }

• bar[1] is outside the array and overwrites stack memory

• Might only be visible when stack smashing protection is enabled

• Different effects depending on data type (32 vs. 64 bits) etc.

Michael Kuhn Memory Organization 7 / 9



Group Exercise Memory Allocation

• What happens with a limited or an unlimited stack?

1 int recinc (int a) {

2 return recinc(a + 1);

3 }

4 int main (void) {

5 recinc (0);

6 return 0;

7 }

• Limited stack: Program crashes after a certain number of recursions

• Unlimited stack: Program will likely be killed by out of memory killer

Michael Kuhn Memory Organization 8 / 9



Group Exercise Memory Allocation

• What happens with a limited or an unlimited stack?

1 int recinc (int a) {

2 return recinc(a + 1);

3 }

4 int main (void) {

5 recinc (0);

6 return 0;

7 }

• Limited stack: Program crashes after a certain number of recursions

• Unlimited stack: Program will likely be killed by out of memory killer

Michael Kuhn Memory Organization 8 / 9



Outline

Memory Organization

Overview

Memory Allocation

Summary



Summary Summary

• Program memory is divided into logical segments
• Code and data are determined at compile time
• Heap and stack are controlled at runtime

• Page size influences overhead of page management
• Huge pages can help reduce overhead

• Heap and stack management can be fragile
• Overwriting metadata can lead to weird behavior or crashes

Michael Kuhn Memory Organization 9 / 9



References

[Thain, 2020] Thain, D. (2020). Introduction to Compilers and Language Design: Second
Edition. http://compilerbook.org/.

http://compilerbook.org/

	Memory Organization
	Overview
	Memory Allocation
	Summary

	Appendix
	References
	



