
Introduction

Compiler Construction
2024-10-15

Prof. Dr. Michael Kuhn
michael.kuhn@ovgu.de

Parallel Computing and I/O
Institute for Intelligent Cooperating Systems
Faculty of Computer Science
Otto von Guericke University Magdeburg
https://parcio.ovgu.de

mailto:michael.kuhn@ovgu.de
https://parcio.ovgu.de


Outline

Introduction

Organization

Lecture

Exercises

Outlook

Summary



Survey Organization

• How familiar are you with C?
1. Expert
2. Advanced
3. Beginner
4. Not at all

Michael Kuhn Introduction 1 / 19



Survey Organization

• How familiar are you with Linux?
1. Expert
2. Advanced
3. Beginner
4. Not at all

Michael Kuhn Introduction 1 / 19



Survey Organization

• How familiar are you with Git?
1. Expert
2. Advanced
3. Beginner
4. Not at all

Michael Kuhn Introduction 1 / 19



Lecture and Exercises Organization

• Lecture: Tuesdays, 11:15–12:45
• Foundation and background of compiler construction
• We will use this time slot for group exercises and discussion
• Based on [Thain, 2020]

• Exercises: Wednesdays, 9:15–10:45
• Practical exercises about compiler construction
• We will discuss solutions and take a look at the next exercise sheet

• Exam: Oral

Michael Kuhn Introduction 2 / 19



Lecture and Exercises. . . Organization

• Lecture will use the flipped classroom format
• You will have to read (at most) one chapter per week
• There will be no summary of the chapter’s content
• We will perform group exercises and discuss the content

• Lecture is supposed to be interactive
• Please prepare questions if you do not understand something

Michael Kuhn Introduction 3 / 19



Communication Organization

• Please sign up for the Mattermost team
• If there are questions about the lecture or exercises, please ask them there
• Feel free to use it for discussion and communication with your fellow students

• You can also use it to find people for your exercise group

• You can of course also send us e-mails:

• michael.kuhn@ovgu.de (lecture and general)
• michael.blesel@ovgu.de (exercises)

• Slides, exercise sheets etc. will be available on the website

Michael Kuhn Introduction 4 / 19

mailto:michael.kuhn@ovgu.de
mailto:michael.blesel@ovgu.de


Literature Organization

• Introduction to Compilers and Language Design (Douglas Thain)
(http://compilerbook.org/)

Michael Kuhn Introduction 5 / 19

http://compilerbook.org/


Outline

Introduction

Organization

Lecture

Exercises

Outlook

Summary



Topics Lecture

• Introduction (today ⌣)

• Scanning

• Parsing (Parts 1 and 2)

• Abstract Syntax Trees

• Semantic Analysis

• Intermediate Representation

Michael Kuhn Introduction 6 / 19



Topics. . . Lecture

• Memory Organization

• Assembly Language

• Code Generation

• Optimization

• Research Talks

Michael Kuhn Introduction 7 / 19



Outline

Introduction

Organization

Lecture

Exercises

Outlook

Summary



Overview Exercises

• Exercises will involve some programming in C
• Trying out the concepts taught in the lecture

• You should have experience in a programming language
• Experience in C is not necessary (but helps)

• We will also work on our cluster via SSH
• Logging in and setting everything up will be part of the first exercise

Michael Kuhn Introduction 8 / 19



Outline

Introduction

Organization

Lecture

Exercises

Outlook

Summary



Motivation Outlook

• Compilers translate programs from a source language to a target language
• For example, C/C++ to machine code
• Can also translate a high-level language into an intermediate representation
• For example, Java source code to Java bytecode

• Compilers also help find errors at compile time
• For example, uninitialized variables
• Different languages have different strictness

• Compilers also improve performance using optimizations
• Applying these optimizations in turn takes time and memory
• Optimization potential is limited

Michael Kuhn Introduction 9 / 19



Motivation. . . Outlook

• Understanding compilers makes you a better programmer
• Helps understand how to write efficient and correct code

• Compiler knowledge allows you to create tooling
• For example, debuggers, new languages or compilers

Michael Kuhn Introduction 10 / 19



Toolchain Outlook

• Preprocessor performs relatively simple replacements
• For example, #include or #define in C

[Thain, 2020]

Michael Kuhn Introduction 11 / 19



Toolchain Outlook

• Compiler translates individual translation units into assembly code
• It scans and parses the code, performs checks and optimizations

[Thain, 2020]

Michael Kuhn Introduction 11 / 19



Toolchain Outlook

• Assembler translates assembly code into object/machine code
• Object code does not contain concrete addresses

[Thain, 2020]

Michael Kuhn Introduction 11 / 19



Toolchain Outlook

• Linker turns one or multiple object files into an executable program
• Fills in everything left open by the assembler

[Thain, 2020]

Michael Kuhn Introduction 11 / 19



Live Demo Outlook

• cat example.c

• gcc -E example.c

• gcc -S example.c

• gcc -c example.c

• gcc -v example.c

Michael Kuhn Introduction 12 / 19



Compiler Outlook

• Scanner turns the source code into tokens
• For example, a token could be int or 42

[Thain, 2020]

Michael Kuhn Introduction 13 / 19



Compiler Outlook

• Parser turns tokens into statements or expressions
• Controlled by a grammar and outputs an abstract syntax tree (AST)

[Thain, 2020]

Michael Kuhn Introduction 13 / 19



Compiler Outlook

• Semantic routines derives meaning about the program
• For example, resulting data types of calculations

[Thain, 2020]

Michael Kuhn Introduction 13 / 19



Compiler Outlook

• Optimizers apply certain optimizations to the intermediate representation (IR)
• For example, loop unrolling, inlining or vectorization

[Thain, 2020]

Michael Kuhn Introduction 13 / 19



Compiler Outlook

• Code generator turns IR into assembly code
• Responsible for register allocation, instruction selection and sequencing

[Thain, 2020]

Michael Kuhn Introduction 13 / 19



Example Outlook

• We want to compile the following code into assembly code
• height = (width+56) * factor(foo);

• The scanner will turn the source code into tokens
• height, width, factor and foo are identifiers
• Purpose of tokens is still unclear: some identifiers are variables, one is a function
• Variable data types are also not clear yet

[Thain, 2020]

Michael Kuhn Introduction 14 / 19



Example. . . Outlook

• The parser checks whether the sequence of tokens is valid
• Validity is checked using a grammar of the language
• Grammars consist of rules
• Rules are applied and turned into an AST

[Thain, 2020]

Michael Kuhn Introduction 15 / 19



Example. . . Outlook

• Semantic routines derive additional meaning
• For example, type checking for assignments and calculations
• Post-order traversal turns AST into IR
• IR typically looks like assembly and assumes infinite registers

[Thain, 2020]

Michael Kuhn Introduction 16 / 19



Example. . . Outlook

• Code generator turns IR into assembly code
• Compilers are often highly modular: same IR for multiple languages, optimizer modules
• Multiple code generators for different architectures

[Thain, 2020]

Michael Kuhn Introduction 17 / 19



Live Demo Outlook

• https://godbolt.org/

Michael Kuhn Introduction 18 / 19

https://godbolt.org/


Outline

Introduction

Organization

Lecture

Exercises

Outlook

Summary



Summary Summary

• Compilers translate programs from a source language to a target language

• Compilers can also help find errors and optimize programs

• Toolchain consists of multiple components
• Preprocessor, actual compiler, assembler and linker

• Compiler itself contains several modules
• Scanner, parser, semantic analysis, optimizers and code generator

Michael Kuhn Introduction 19 / 19



References

[Thain, 2020] Thain, D. (2020). Introduction to Compilers and Language Design: Second
Edition. http://compilerbook.org/.

http://compilerbook.org/

	Introduction
	Organization
	Lecture
	Exercises
	Outlook
	Summary

	Appendix
	References
	



