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Advanced MPI and Debugging Review

• How does one-sided communication work?
1. One-sided communication works with messages
2. Every process can access every other address space
3. Addresses first have to be exposed via windows
4. System looks like a shared memory system to the processes
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Advanced MPI and Debugging Review

• What is the difference between active and passive target communication?
1. Both origin and target are involved in active target communication
2. Both origin and target are involved in passive target communication
3. Only target process is involved in active target communication
4. Only target process is involved in passive target communication
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Advanced MPI and Debugging Review

• What is the purpose of MPI_Accumulate?
1. Can be used to sum multiple values
2. Can be used to perform specific reductions on values
3. Can be used to merge multiple windows
4. Can be used to collect information about processes
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Advanced MPI and Debugging Review

• How can deadlocks and race conditions be detected?
1. The compiler warns about them
2. Static analysis can detect some errors
3. Errors can only be detected at runtime
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Computation and I/O Introduction and Motivation

• Parallel applications run on multiple nodes
• Communication via MPI

• Computation is only one part of applications
• Input data has to be read
• Output data has to be written
• Example: checkpoints

• Processors require data fast
• Caches should be used optimally
• Additional latency due to I/O and network

Level Latency
L1 cache ≈ 1 ns
L2 cache ≈ 5 ns
L3 cache ≈ 10 ns

RAM ≈ 100 ns

InfiniBand ≈ 500 ns
Ethernet ≈ 100,000 ns

SSD ≈ 100,000 ns
HDD ≈ 10,000,000 ns

[Bonér, 2012] [Huang et al., 2014]
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Computation and I/O. . . Introduction and Motivation

• I/O is often responsible for performance problems
• High latency causes idle processors
• I/O is often still serial, limiting throughput

• Storage stack is layered
• Many different components are involved
• Performance problems influence all layers

Parallel Application

Libraries and Middleware

Parallel Distributed File System

File System

Storage Devices
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Hard Disk Drives Storage Devices and Arrays

• The first hard disk drive in 1956
• IBM 350 RAMAC
• Capacity: 3.75 MB
• Throughput: 8.8 KB/s
• Rotational speed: 1,200 RPM

• HDD development is rather slow
• Capacity: 100× every 10 years
• Throughput: 10× every 10 years

[Wikipedia, 2021]
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Solid-State Drives Storage Devices and Arrays

• Advantages
• Read throughput: Higher by a factor of 15 (150–250 MB/s vs. 0.5–3.5 GB/s)
• Write throughput: Higher by a factor of 10
• Latency: Lower by a factor of 100 (75–100 IOPS vs. 90,000–600,000 IOPS)
• Energy consumption: Lower by a factor of 1–10

• Disadvantages
• Price: Higher by a factor of 5
• Endurance: Only allow 10,000–100,000 write cycles
• Complexity

• Optimal access size differs for read and write accesses
• Address translations is more complicated
• Fast drives can overheat easily
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RAID Storage Devices and Arrays

• Storage arrays for higher capacity, throughput and reliability
• Proposed in 1988 at the University of California, Berkeley

• Originally: Redundant Array of Inexpensive Disks
• Today: Redundant Array of Independent Disks

• Capacity
• Storage array can be addressed like a single, large device

• Throughput
• All storage devices can contribute to the overall throughput

• Reliability
• Data can be stored redundantly to survive hardware failures
• Devices usually have same age, fabrication defects within same batch
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RAID. . . Storage Devices and Arrays

• Five different variants initially
• RAID 1: mirroring
• RAID 2/3: bit/byte striping
• RAID 4: block striping
• RAID 5: block striping with distributed parity

• New variants have been added
• RAID 0: striping
• RAID 6: block striping with double parity
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RAID 1 Storage Devices and Arrays

• Improved reliability via mirroring

• Advantages
• One device can fail without losing data
• Read performance can be improved

• Disadvantages
• Capacity requirements and costs are doubled
• Write performance equals that of a single device

A4
A3
A2
A1

A4
A3
A2
A1

RAID 1

Disk 0 Disk 1

[Cburnett, 2006a]
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RAID 5 Storage Devices and Arrays

• Improved reliability via parity
• Typically simple XOR

• Advantages
• Performance can be improved
• Requests can be processed in parallel
• Load is distributed across all devices

RAID 5

Dp

C1
B1
A1

Disk 0

D1
Cp

B2
A2

Disk 1

D2
C2
Bp

A3

Disk 2

D3
C3
B3
Ap

Disk 3

[Cburnett, 2006b]
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RAID 5. . . Storage Devices and Arrays

• Data can be reconstructed
easily due to XOR

• ?A = A1 ⊕ A2 ⊕ Ap,
?B = B1 ⊕ B2 ⊕ B3, . . .

• Problems
• Read errors on other devices
• Duration (30 min in 2004,

19–20 h in 2021 for HDDs)
• New approaches like

declustered RAID

RAID 5
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Disk 0
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Disk 1
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?B
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Disk 2

D3
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Disk 3

[Cburnett, 2006b]
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Quiz Storage Devices and Arrays

• Which RAID level would you choose for a server with 10 HDDs?
1. RAID 0 (striping)
2. RAID 1 (mirroring)
3. RAID 5 (block striping with distributed parity)
4. RAID 6 (block striping with distributed double parity)
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Overview File Systems

• File systems provide structure
• Files and directories are the most common file system objects
• Nesting directories results in hierarchical organization

• Other approaches: tagging

• Management of data and metadata
• Block allocation is important for performance
• Access permissions, timestamps etc.

• File systems use underlying storage devices or arrays
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File System Objects File Systems

• User vs. system view
• Users see files and directories
• System manages inodes

• Relevant for stat etc.

• Files
• Contain data as byte arrays
• Can be read and written (explicitly)
• Can be mapped to memory (implicit)

• Directories
• Contain files and directories
• Structure the namespace

Michael Kuhn Parallel I/O 13 / 39



I/O Interfaces File Systems

• Requests are realized through I/O interfaces
• Forwarded to the file system

• Different abstraction levels
• Low-level functionality: POSIX etc.
• High-level functionality: NetCDF etc.

• Initial access via path
• Afterwards access via file descriptor (few

exceptions)

• Functions are located in libc

• Library executes system calls

1 fd = open("/path/to/file", ...);

2 nb = write(fd, data ,

3 sizeof(data));

4 rv = close(fd);

5 rv = unlink("/path/to/file");
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Virtual File System (Switch) File Systems

• Central file system component in the kernel
• Sets file system structure and interface

• Forwards applications’ requests based on path

• Enables supporting multiple different file systems
• Applications are still portable due to POSIX

• POSIX: standardized interface for all file systems
• Syntax defines available operations and their parameters

• open, close, creat, read, write, lseek, chmod, chown, stat etc.

• Semantics defines operations’ behavior

• write: “POSIX requires that a read(2) which can be proved to occur after a write() has returned
returns the new data. Note that not all filesystems are POSIX conforming.”
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VFS. . . [Werner Fischer and Georg Schönberger, 2017] File Systems

Applications (processes)

VFS

malloc

BIOs (block I/Os)

The Linux Storage Stack Diagram
http://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

Created by Werner Fischer and Georg Schönberger
License: CC-BY-SA 3.0, see http://creativecommons.org/licenses/by-sa/3.0/
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Modern File Systems File Systems

• File system demands are growing
• Data integrity, storage management, convenience functionality

• Error rate for SATA HDDs: 1 in 1014 to 1015 bits [Seagate, 2016]
• That is, one bit error per 12.5–125 TB
• Additional bit errors in RAM, controller, cable, driver etc.

• Error rate can be problematic
• Amount can be reached in daily use
• Bit errors can occur in the superblock

• File system does not have knowledge about storage array
• Knowledge is important for performance
• For example, special options for ext4
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Overview Parallel Distributed File Systems

• Parallel file systems
• Allow parallel access to shared resources
• Access should be as efficient as possible

• Distributed file systems
• Data and metadata is distributed across multiple servers
• Single servers do not have a complete view

• Naming is inconsistent
• Often just “parallel file system” or “cluster file system”

Data

Clients

Servers

File
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Architecture Parallel Distributed File Systems

• Access via I/O interface
• Typically standardized,

frequently POSIX

• Interface consists of syntax
and semantics

• Syntax defines operations,
semantics defines behavior

• Data and metadata servers
• Different access patterns
• Data vs. request throughput

Network

Clients

MDSs
MDTs

OSSs
OSTs
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Semantics Parallel Distributed File Systems

• POSIX has strong consistency/coherence requirements
• Changes have to be visible globally after write
• I/O should be atomic to avoid inconsistencies

• POSIX for local file systems
• Requirements easy to support due to VFS

• Contrast: Network File System (NFS)
• Same syntax, different semantics

• Session semantics in NFS
• Changes only visible to other clients after session ends
• close writes changes and returns potential errors
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Data Distribution Parallel Distributed File Systems

• File is split up into blocks
• Blocks are distributed across servers
• Here, eight blocks across five servers
• Blocks typically have static size

• Round-robin distribution often used
• Restart at first server after last

• Does not have to start at first server
• Typically randomly chosen server

Blocks

Server

Stripes

B1B0 B5 B6B3 B4B2 B7

B1

B7B5 B6

B3B2B0B4
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Quiz Parallel Distributed File Systems

• Why is the starting server chosen randomly?
• Easy implementation
• Even load distribution
• Fault tolerance

Blocks

Server

Stripes

B1B0 B5 B6B3 B4B2 B7

B1

B7B5 B6

B3B2B0B4
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Performance Parallel Distributed File Systems

• 2009: Blizzard (GPFS)
• Computation:

158 TFLOPS
• Capacity: 7 PB
• Throughput:

30 GB/s

• 2015: Mistral (Lustre)
• Computation: 3.6 PFLOPS
• Capacity: 60 PB
• Throughput: 450 GB/s

(5.9 GB/s per node)
• IOPS: 400,000 operations/s

• 2022: Levante (Lustre)
• Computation:

14 PFLOPS
• Capacity: 130 PB

• 2012: Titan (ORNL, Lustre)
• Computation: 17.6 PFLOPS
• Capacity: 40 PB
• Throughput: 1.4 TB/s

• 2019: Summit (ORNL, Spectrum Scale)
• Computation: 148.6 PFLOPS
• Capacity: 250 PB
• Throughput: 2.5 TB/s
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Overview Libraries

• Low-level interfaces can be used for parallel I/O
• They are typically not very convenient for developers

• Parallel applications require support for efficient parallel I/O
• Synchronous and serial I/O are bottlenecks
• Reading input data and writing output data

• Additional problems
• Exchangeability of data, complex programming, performance

• Libraries offer additional functionality
• SIONlib (performance optimizations)
• NetCDF, HDF (self-describing data and exchangeability)
• ADIOS (abstract I/O)
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MPI-IO Libraries

• MPI-IO is a part of MPI specifying a portable I/O interface
• Has been introduced with MPI-2.0 in 1997

• One of the most popular implementations is called ROMIO
• ROMIO is developed and distributed as part of MPICH
• It is used in OpenMPI and MPICH derivatives
• Supports many file systems via Abstract-Device Interface for I/O (ADIO)

• MPI-IO provides element-based access to data
• The interface is very similar to MPI’s communication interface
• Supports collective and non-blocking operations as well as derived datatypes
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MPI-IO. . . Libraries

• MPI-IO defines the syntax and semantics of I/O operations
• Changes are only visible in the current process immediately
• Non-overlapping or non-concurrent operations are handled correctly

• POSIX I/O has strong coherence and consistency semantics
• Changes have to visible globally after a write and should be atomic
• Makes it hard to cache data and often requires locks

• Relaxed semantics have less overhead in distributed environments
• Improved scalability and less need for locking

• MPI-IO semantics is usually enough for scientific applications
• For example, non-overlapping access to a shared matrix
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MPI-IO. . . Libraries

Positioning Blocking Individual Collective

Explicit Offset

Blocking
read_at read_at_all

write_at write_at_all

Non-Blocking &
Split Collective

iread_at read_at_all_begin

read_at_all_end

iwrite_at write_at_all_begin

write_at_all_end

Individual File
Pointers

Blocking
read read_all

write write_all

Non-Blocking &
Split Collective

iread read_all_begin

read_all_end

iwrite write_all_begin

write_all_end

Shared File
Pointer

Blocking
read_shared read_ordered

write_shared write_ordered

Non-Blocking &
Split Collective

iread_shared read_ordered_begin

read_ordered_end

iwrite_shared write_ordered_begin

write_ordered_end
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NetCDF Libraries

• Developed by Unidata Program Center
• University Corporation for Atmospheric Research

• Mainly used for scientific applications
• Especially in climate science, meteorology and oceanography

• Consists of libraries and data formats
1. Classic format (CDF-1)
2. Classic format with 64 bit offsets (CDF-2)
3. Classic format with full 64 bit support (CDF-5)
4. NetCDF-4 format

• Data formats are open standards
• CDF-1 and CDF-2 are international standards of the Open Geospatial Consortium
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NetCDF. . . Libraries

• NetCDF supports groups and variables
• Groups contain variables, variables contain data
• Attributes can be attached to variables

• Supports multi-dimensional arrays
• char, byte, short, int, float and double

• NetCDF-4: ubyte, ushort, uint, int64, uint64 and string

• Dimensions can be sized arbitrarily
• Only one unlimited dimension with CDF-1, CDF-2 and CDF-5
• Multiple unlimited dimensions with NetCDF-4
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Interaction Libraries

Parallel Application

NetCDF

HDF5

MPI-IO

Lustre

Storage Device/Array

• Data transformation
• Data is transported through all layers
• Loss of high-level information

• Complex interactions
• Optimizations and workarounds on all layers
• Information about other layers required

• Convenience vs. performance
• Structured data in application
• Byte stream in POSIX
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Storage Hierarchy Future Developments

• Current state
• L1, L2, L3 cache, RAM, SSD, HDD, tape

• Latency gap from RAM to SSD
• Performance loss if data is not in RAM

• Performance gap is worse on
supercomputers

• RAM is node-local, data is in parallel
distributed file system

• New technologies to close gap
• Non-volatile RAM (NVRAM),

NVM Express (NVMe) etc.

Level Latency
L1 cache ≈ 1 ns
L2 cache ≈ 5 ns
L3 cache ≈ 10 ns

RAM ≈ 100 ns

NVRAM ≈ 1,000 ns
NVMe ≈ 10,000 ns

SSD ≈ 100,000 ns
HDD ≈ 10,000,000 ns
Tape ≈ 50,000,000,000 ns

[Bonér, 2012] [Huang et al., 2014]
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Storage Hierarchy. . . [Brent Gorda, 2016] Future Developments
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Storage Hierarchy. . . [Brent Gorda, 2013] Future Developments

• I/O nodes with burst buffers close to compute nodes

• Slower storage network to file system servers
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Storage Hierarchy. . . Future Developments

• NVRAM only readily available as Intel Optane Persistent Memory
• Supports different modes of operation
• Memory Mode: NVRAM extends RAM transparently
• Application Direct Mode: Access via device, file or memory API

• Intel announced discontinuation of Optane in 2022
• No real alternatives are available at the moment
• Samsung and KIOXIA offer faster SSD solutions
• Supposedly much faster than NVMe SSDs
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Quiz Future Developments

• How much storage bandwidth is used on average?
1. 99 %
2. 50 %
3. 33 %
4. 5 %
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Burst Buffers [Mike Vildibill, 2015] Future Developments
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DAOS Future Developments

• New holistic approach for I/O
• Distributed Application Object Storage (DAOS)

• Supports multiple storage models
• Arrays and records are base objects
• Objects contain arrays and records (key-array)
• Containers consist of objects, storage pools consist of containers

• Support for versioning
• Operations are executed in transactions
• Transactions are persisted as epochs

• Make use of modern storage technologies
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DAOS. . . [Brent Gorda, 2013] Future Developments

• I/O is typically performed synchronously
• Applications have to wait for slowest process, variations are normal
• File is only consistent after all processes have finished writing

• I/O should be completely asynchronous
• Eliminates waiting times, makes better use of resources
• Difficult to define consistency, transactions and snapshots can be used
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Summary Summary

• Achieving high performance I/O is a complex task
• Many layers: storage devices, file systems, libraries etc.

• File systems organize data and metadata
• Modern file systems provide additional functionality

• Parallel distributed file systems allow efficient access
• Data is distributed across multiple servers

• I/O libraries facilitate ease of use
• Exchangeability of data is an important factor

• New technologies will make the storage stack more complex
• Future systems will offer novel I/O approaches
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