
Advanced MPI and Debugging

Parallel Programming
2023-12-14

Prof. Dr. Michael Kuhn
michael.kuhn@ovgu.de

Parallel Computing and I/O
Institute for Intelligent Cooperating Systems
Faculty of Computer Science
Otto von Guericke University Magdeburg
https://parcio.ovgu.de

mailto:michael.kuhn@ovgu.de
https://parcio.ovgu.de


Outline

Advanced MPI and Debugging

Review

Introduction

One-Sided Communication

Profiling Interface

Debugging

Summary



Networking and Scalability Review

• Which functionality is not used for high-speed networking?
1. Remote direct memory access
2. Zero copy
3. Vectorization
4. Kernel bypass

Michael Kuhn Advanced MPI and Debugging 1 / 39



Networking and Scalability Review

• Which technology improves at the fastest rate?
1. Storage capacity
2. Storage throughput
3. Network throughput
4. Memory throughput
5. Computation

Michael Kuhn Advanced MPI and Debugging 1 / 39



Networking and Scalability Review

• When does Amdahl’s Law apply?
1. Fixed problem size
2. Fixed runtime
3. Serial portion is smaller than 10 %
4. Multiple program, multiple data streams (MPMD)

Michael Kuhn Advanced MPI and Debugging 1 / 39



Networking and Scalability Review

• Which scaling behavior is preferable?
1. Weak scaling
2. Strong scaling
3. Both are equally good

Michael Kuhn Advanced MPI and Debugging 1 / 39



Networking and Scalability Review

• What is strong scaling?
1. Increase problem size with task count
2. Increase task count with constant problem size
3. Increase runtime with constant task count
4. Decrease problem size with constant task count

Michael Kuhn Advanced MPI and Debugging 1 / 39



Outline

Advanced MPI and Debugging

Review

Introduction

One-Sided Communication

Profiling Interface

Debugging

Summary



Motivation Introduction

• MPI supports basic and complex operations
• Point-to-point and collective communication
• Groups, communicators and topologies
• Environment checks
• Parallel I/O

• Advanced functionality
• Dynamic process management
• Non-blocking collectives
• Profiling interface
• One-sided communication

Michael Kuhn Advanced MPI and Debugging 2 / 39



Motivation. . . Introduction

• One-sided communication enables more efficient interaction
• Optimizations like RDMA, zero copy etc. can be utilized easily
• One-sided communication is similar to shared memory programming

• Profiling interface gives insight into internals
• Can be used for performance measurements, debugging etc.
• Frameworks can hook into the profiling interface (for example, Score-P)

Michael Kuhn Advanced MPI and Debugging 3 / 39



Motivation. . . Introduction

• Dedicated debugging support for parallel applications easier for developers
• Deadlocks or race conditions can be hard to find and correct

• Sophisticated optimizations can lead to hard-to-debug problems
• Parallelization introduces deadlocks and race conditions
• Traditional languages do not have means to detect problems

• New languages with native support for parallelism
• Rust can detect data races at compile time due to its ownership concept

Michael Kuhn Advanced MPI and Debugging 4 / 39



Outline

Advanced MPI and Debugging

Review

Introduction

One-Sided Communication

Profiling Interface

Debugging

Summary



Overview One-Sided Communication

• One-sided communication provides remote memory access (RMA)
• Can be handled efficiently by appropriate hardware
• Both Ethernet and InfiniBand support native RDMA

• Point-to-point requires knowledge on both sides
• For some applications or communication schemes, this might be difficult
• Only the process doing the accesses might know what data to put where

• Theoretically offers better performance than other communication schemes
• Other side can continue performing computation during communication

Michael Kuhn Advanced MPI and Debugging 5 / 39



Overview. . . One-Sided Communication

• Functions for basic operations
• Write: MPI_Put and MPI_Rput

• Read: MPI_Get and MPI_Rget

• More complex functionality is also available
• Update: MPI_Accumulate and MPI_Raccumulate

• Read and update: MPI_Get_accumulate, MPI_Rget_accumulate and MPI_Fetch_and_op

• Atomic swap: MPI_Compare_and_swap

• Blocking or request-based variants
• R stands for request-based and behaves like non-blocking
• Request-based calls have to be finished with MPI_Wait etc.

Michael Kuhn Advanced MPI and Debugging 6 / 39



Windows One-Sided Communication

• One-sided communication still does not allow access to whole address space
• In contrast to shared memory, where everything is shared by default

• Memory regions have to be exposed via windows
• Enables access to specified memory regions within a process

• Two main types of windows
1. Allocated windows (includes backing memory)

• Either local or shared memory

2. Created windows (requires existing backing memory)

• Either static or dynamic windows

Michael Kuhn Advanced MPI and Debugging 7 / 39



Windows. . . One-Sided Communication

• MPI_Win_create

• Base: Memory address
• Size: Memory size
• Displacement unit: Element size
• Info: Implementation hints
• Communicator: Process mapping
• Window: Exposed memory

1 void window_create(void) {

2 MPI_Win win;

3 char str [100];

4 snprintf(str , 100,

5 "Hello from %d\n", rank);

6

7 MPI_Win_create(str ,

8 sizeof(str), 1,

9 MPI_INFO_NULL ,

10 MPI_COMM_WORLD ,

11 &win);

12 MPI_Win_free (&win);

13 }

Michael Kuhn Advanced MPI and Debugging 8 / 39



Windows. . . One-Sided Communication

• MPI_Win_allocate

• Size: Memory size
• Displacement unit: Element size
• Info: Implementation hints
• Communicator: Process mapping
• Base: New memory address
• Window: Exposed memory

1 void window_allocate(void) {

2 MPI_Win win;

3 char* str;

4

5 MPI_Win_allocate (100, 1,

6 MPI_INFO_NULL ,

7 MPI_COMM_WORLD ,

8 &str , &win);

9 snprintf(str , 100,

10 "Hello from %d\n", rank);

11 MPI_Win_free (&win);

12 }

Michael Kuhn Advanced MPI and Debugging 8 / 39



Memory Models One-Sided Communication

• MPI differentiates between public and private memory
• Public: Exposed main memory, addressable by all processes
• Private: Caches etc. that are only addressable by the local process

• There are two memory models based on public and private memory
1. Separate: No assumptions about memory consistency, portable (non-coherent)

• Changes to public require RMA calls to synchronize to private memory

2. Unified: Updates to public memory are synchronized to private memory (coherent)

• Public and private memory are always identical and require no synchronization
• Without synchronization, data might still be inconsistent while in progress

Michael Kuhn Advanced MPI and Debugging 9 / 39



Memory Models. . . One-Sided Communication

• MPI_Win_get_attr

• Window: Exposed memory
• Key: Attribute to query
• Value: Pointer to store value in
• Flag: Whether attribute could be queried

• Create flavor
• Find out how window was allocated

• Memory model
• Get information about memory model

1 void print_win(MPI_Win win) {

2 int* val;

3 int flag;

4

5 MPI_Win_get_attr(win ,

6 MPI_WIN_CREATE_FLAVOR ,

7 &val , &flag);

8 print_flavor (*val);

9

10 MPI_Win_get_attr(win ,

11 MPI_WIN_MODEL ,

12 &val , &flag);

13 print_model (*val);

14 }

Michael Kuhn Advanced MPI and Debugging 10 / 39



Memory Models. . . One-Sided Communication

• MPI_Win_get_attr

• Window: Exposed memory
• Key: Attribute to query
• Value: Pointer to store value in
• Flag: Whether attribute could be queried

• Create flavor
• Find out how window was allocated

• Memory model
• Get information about memory model

flavor=create

model=unified

flavor=allocate

model=unified

Michael Kuhn Advanced MPI and Debugging 10 / 39



Communication Models One-Sided Communication

• MPI clearly defines processes involved in RMA communication
• Origin: Process that performs a call
• Target: Process that is accessed by a call

• Might lead to unintuitive situations
• Putting data into another process’s memory

• Source of the data is the origin
• Destination for the data is the target

• Getting data from another process’s memory

• Source of the data is the target
• Destination for the data is the origin

Michael Kuhn Advanced MPI and Debugging 11 / 39



Communication Models. . . One-Sided Communication

• MPI supports two modes for one-sided communication
1. Active target communication
2. Passive target communication

• Active target communication
• Both origin and target are involved in the communication
• Similar to message passing where both sides are involved
• All arguments provided by one process, the other just participates in synchronization

• Passive target communication
• Only origin process is involved in communication
• Close to shared memory programming where other threads are not influenced

Michael Kuhn Advanced MPI and Debugging 12 / 39



Epochs One-Sided Communication

• Communication calls must happen inside an access epoch
• Epoch starts with a synchronization call on window
• Followed by arbitrarily many communication calls
• Epoch completes with another synchronization call

• Active target communication also has exposure epochs
• Epoch starts with a synchronization call by target process
• One-to-one matching of access and exposure epochs

• Passive target communication does not have synchronization on target
• There also is no exposure epoch

Michael Kuhn Advanced MPI and Debugging 13 / 39



Synchronization One-Sided Communication

• Two synchronization mechanisms for active target communication
• MPI_Win_fence is a collective synchronization call

• Starts access and exposure epochs

• MPI_Win_start, MPI_Win_complete, MPI_Win_post and MPI_Win_wait are fine-grained

• Only communicating processes synchronize
• MPI_Win_start and MPI_Win_complete start and stop access epochs
• MPI_Win_post and MPI_Win_wait start and stop exposure epochs

• One synchronization mechanism for passive target communication
• MPI_Win_lock, MPI_Win_lock_all, MPI_Win_unlock and MPI_Win_unlock_all

Michael Kuhn Advanced MPI and Debugging 14 / 39



Put One-Sided Communication

• Every process exposes a window
• Other processes can write into it

and read from it
• Access is only possible via window

• Put local string into remote memory
• str should be copied into window

1 char str [100];

2 char buf [100];

3

4 MPI_Win win;

5

6 void window(void) {

7 snprintf(str , 100,

8 "Hello from %d\n", rank);

9 MPI_Win_create(buf ,

10 sizeof(buf), 1,

11 MPI_INFO_NULL ,

12 MPI_COMM_WORLD , &win);

13 }

Michael Kuhn Advanced MPI and Debugging 15 / 39



Put. . . One-Sided Communication

• Passive target communication
• Lock and unlock necessary
• Put will be finished after unlock

• MPI_Win_lock

• Type: Exclusive or shared
• Rank: Target rank
• Assert: Optimization hints
• Window: Exposed memory

• MPI_Win_unlock

• Rank: Target rank
• Window: Exposed memory

1 void put(void) {

2 MPI_Win_lock(MPI_LOCK_EXCLUSIVE ,

3 (rank + 1) % size ,

4 MPI_MODE_NOCHECK , win);

5 MPI_Put(str , 100, MPI_CHAR ,

6 (rank + 1) % size , 0,

7 100, MPI_CHAR , win);

8 MPI_Win_unlock(

9 (rank + 1) % size , win);

10

11 MPI_Barrier(MPI_COMM_WORLD);

12 printf("%d: %s", rank , buf);

13 }

Michael Kuhn Advanced MPI and Debugging 16 / 39



Put. . . One-Sided Communication

• MPI_Put

• Origin buffer: Data to put
• Origin count: Number of elements
• Origin datatype: Type of elements
• Target rank: Where to put data
• Target displacement: Offset in window
• Target count: Number of elements
• Target datatype: Type of elements
• Window: Exposed memory

1 void put(void) {

2 MPI_Win_lock(MPI_LOCK_EXCLUSIVE ,

3 (rank + 1) % size ,

4 MPI_MODE_NOCHECK , win);

5 MPI_Put(str , 100, MPI_CHAR ,

6 (rank + 1) % size , 0,

7 100, MPI_CHAR , win);

8 MPI_Win_unlock(

9 (rank + 1) % size , win);

10

11 MPI_Barrier(MPI_COMM_WORLD);

12 printf("%d: %s", rank , buf);

13 }

Michael Kuhn Advanced MPI and Debugging 16 / 39



Put. . . One-Sided Communication

• Ring communication
• Each process copies string into next

process’s memory

• Target is not involved
• Origin locks remote window
• Afterwards, data is put there

$ mpiexec -n 4 ./put

0: Hello from 3

1: Hello from 0

2: Hello from 1

3: Hello from 2

Michael Kuhn Advanced MPI and Debugging 17 / 39



Quiz One-Sided Communication

• What happens without MPI_Barrier?
1. The same as with the barrier
2. buf can be empty
3. Processes crash
4. Processes deadlock

1 void put(void) {

2 MPI_Win_lock(MPI_LOCK_EXCLUSIVE ,

3 (rank + 1) % size ,

4 MPI_MODE_NOCHECK , win);

5 MPI_Put(str , 100, MPI_CHAR ,

6 (rank + 1) % size , 0,

7 100, MPI_CHAR , win);

8 MPI_Win_unlock(

9 (rank + 1) % size , win);

10

11 MPI_Barrier(MPI_COMM_WORLD);

12 printf("%d: %s", rank , buf);

13 }

Michael Kuhn Advanced MPI and Debugging 18 / 39



Get One-Sided Communication

• Schema is inverted with get
• Every process exposes their string
• Other processes can write into it and

read from it

• Get remote string into local memory
• Window should be copied into buf

1 char str [100];

2 char buf [100];

3

4 MPI_Win win;

5

6 void window(void) {

7 snprintf(str , 100,

8 "Hello from %d\n", rank);

9 MPI_Win_create(str ,

10 sizeof(str), 1,

11 MPI_INFO_NULL ,

12 MPI_COMM_WORLD , &win);

13 }

Michael Kuhn Advanced MPI and Debugging 19 / 39



Get. . . One-Sided Communication

• MPI_Get

• Origin buffer: Where to get data
• Origin count: Number of elements
• Origin datatype: Type of elements
• Target rank: From where to get data
• Target displacement: Offset in window
• Target count: Number of elements
• Target datatype: Type of elements
• Window: Exposed memory

1 void put(void) {

2 MPI_Win_lock(MPI_LOCK_EXCLUSIVE ,

3 (size + rank - 1) % size ,

4 MPI_MODE_NOCHECK , win);

5 MPI_Get(buf , 100, MPI_CHAR ,

6 (size + rank - 1) % size , 0,

7 100, MPI_CHAR , win);

8 MPI_Win_unlock(

9 (size + rank - 1) % size ,

10 win);

11

12 printf("%d: %s", rank , buf);

13 }

Michael Kuhn Advanced MPI and Debugging 20 / 39



Get. . . One-Sided Communication

• Ring communication
• Each process copies string from previous

process’s memory

• Target is not involved again
• Origin locks remote window
• Afterwards, get operation is performed

$ mpiexec -n 4 ./get

0: Hello from 3

1: Hello from 0

2: Hello from 1

3: Hello from 2

Michael Kuhn Advanced MPI and Debugging 21 / 39



Quiz One-Sided Communication

• Why is no MPI_Barrier used?
1. It is a bug, barrier is required
2. Implicit synchronization
3. Window is small enough

1 void put(void) {

2 MPI_Win_lock(MPI_LOCK_EXCLUSIVE ,

3 (size + rank - 1) % size ,

4 MPI_MODE_NOCHECK , win);

5 MPI_Get(buf , 100, MPI_CHAR ,

6 (size + rank - 1) % size , 0,

7 100, MPI_CHAR , win);

8 MPI_Win_unlock(

9 (size + rank - 1) % size ,

10 win);

11

12 printf("%d: %s", rank , buf);

13 }

Michael Kuhn Advanced MPI and Debugging 22 / 39



Accumulate One-Sided Communication

• MPI supports accumulate operations
• Similar to reduce operations in

collective communication

• Collect maximum rank across all processes
• Works like MPI_Reduce with MPI_MAX

1 int buf = 0;

2

3 MPI_Win win;

4

5 void window(void) {

6 MPI_Win_create (&buf ,

7 sizeof(buf), 1,

8 MPI_INFO_NULL ,

9 MPI_COMM_WORLD , &win);

10 }

Michael Kuhn Advanced MPI and Debugging 23 / 39



Accumulate. . . One-Sided Communication

• MPI_Accumulate

• Origin buffer: Data to accumulate
• Origin count: Number of elements
• Origin datatype: Type of elements
• Target rank: Where to accumulate data
• Target displacement: Offset in window
• Target count: Number of elements
• Target datatype: Type of elements
• Op: Operation to perform
• Window: Exposed memory

1 void put(void) {

2 MPI_Win_lock(MPI_LOCK_EXCLUSIVE ,

3 0, 0, win);

4 MPI_Accumulate (&rank , 1,

5 MPI_INT , 0, 0, 1,

6 MPI_INT , MPI_MAX , win);

7 MPI_Win_unlock (0, win);

8

9 MPI_Barrier(MPI_COMM_WORLD);

10

11 printf("%d: %d\n", rank , buf);

12 }

Michael Kuhn Advanced MPI and Debugging 24 / 39



Accumulate. . . One-Sided Communication

• Maximum is accumulated on rank 0
• All other processes keep original value

• Accumulated value has to be distributed
• For instance, using MPI_Broadcast

$ mpiexec -n 4 ./ accumulate

0: 3

1: 0

2: 0

3: 0

Michael Kuhn Advanced MPI and Debugging 25 / 39



Outline

Advanced MPI and Debugging

Review

Introduction

One-Sided Communication

Profiling Interface

Debugging

Summary



Motivation Profiling Interface

• Profiling interface allows debugging and performance analysis
• Function calls can be intercepted and recorded

• Many different MPI implementations exist
• Source code for a specific implementation may not be available
• Some are proprietary and cannot be inspected

• Realized via a second set of function names
• Functions are prefixed with PMPI_ instead of MPI_

Michael Kuhn Advanced MPI and Debugging 26 / 39



Motivation. . . Profiling Interface

• Can also be used for other purposes
• For instance, choose different functions from different implementations

• MPI_Pcontrol must be provided by implementations
• Enable or disable profiling, flush buffers etc.
• Default implementation does nothing

• Implementation
• Weak symbols: Compiler takes care of symbols
• Otherwise: Link in correct order (-lmylib -lpmpi -lmpi)

Michael Kuhn Advanced MPI and Debugging 27 / 39



Overriding Functions Profiling Interface

• Override functions with own definition
• Compiler calls own definition
• Weak symbols allow overriding

• Implementation available via PMPI_

• Easy to cause infinite recursions

• Easy to log all parameters
• Frameworks like Score-P use this
• Can be visualized with Vampir etc.

1 int MPI_Send(const void* buf ,

2 int count ,

3 MPI_Datatype datatype ,

4 int dest , int tag ,

5 MPI_Comm comm) {

6 printf("MPI_Send: buf=%p,"

7 " count=%d, datatype =%d,"

8 " dest=%d, tag=%d,"

9 " comm=%d\n", buf , count ,

10 datatype , dest , tag , comm);

11 return PMPI_Send(buf , count ,

12 datatype , dest , tag , comm);

13 }

Michael Kuhn Advanced MPI and Debugging 28 / 39



Overriding Functions Profiling Interface

• Override functions with own definition
• Compiler calls own definition
• Weak symbols allow overriding

• Implementation available via PMPI_

• Easy to cause infinite recursions

• Easy to log all parameters
• Frameworks like Score-P use this
• Can be visualized with Vampir etc.

1 int MPI_Recv(void* buf , int count ,

2 MPI_Datatype datatype ,

3 int source , int tag ,

4 MPI_Comm comm ,

5 MPI_Status* status) {

6 printf("MPI_Recv: buf=%p,"

7 " count=%d, datatype =%d,"

8 " source =%d, tag=%d,"

9 " comm=%d, status =%p\n",

10 buf , count , datatype ,

11 source , tag , comm ,

12 (void*) status);

13 return PMPI_Recv(buf , count ,

14 datatype , source , tag ,

15 comm , status);

16 }

Michael Kuhn Advanced MPI and Debugging 28 / 39



Overriding Functions Profiling Interface

• Override functions with own definition
• Compiler calls own definition
• Weak symbols allow overriding

• Implementation available via PMPI_

• Easy to cause infinite recursions

• Easy to log all parameters
• Frameworks like Score-P use this
• Can be visualized with Vampir etc.

$ mpiexec -n 2 ./ profiling

MPI_Send: [...], count =100, [...],

↩→ dest=1, tag=0, [...]

MPI_Recv: [...], count =100, [...],

↩→ source=1, tag=0, [...]

0: Hello from 1

MPI_Send: [...], count =100, [...],

↩→ dest=0, tag=0, [...]

MPI_Recv: [...], count =100, [...],

↩→ source=0, tag=0, [...]

1: Hello from 0

Michael Kuhn Advanced MPI and Debugging 28 / 39



Outline

Advanced MPI and Debugging

Review

Introduction

One-Sided Communication

Profiling Interface

Debugging

Summary



Error Classes Debugging

• Example: Race condition
• Incrementing consists of three steps

1. Loading the variable
2. Modifying the variable
3. Storing the variable

• Have to be performed atomically

• Two new error classes
1. Deadlocks
2. Race conditions

1 static int counter = 0;

2

3 void* thread_func(void* data) {

4 (void)data;

5

6 for (int i = 0; i < 1000; i++) {

7 counter ++;

8 }

9

10 return NULL;

11 }

Michael Kuhn Advanced MPI and Debugging 29 / 39



Error Classes Debugging

• Example: Race condition
• Incrementing consists of three steps

1. Loading the variable
2. Modifying the variable
3. Storing the variable

• Have to be performed atomically

• Two new error classes
1. Deadlocks
2. Race conditions

T0 T1 V
Load 0 0
Inc 1 0
Store 1 1

Load 1 1
Inc 2 1
Store 2 2

T0 T1 V
Load 0 0
Inc 1 Load 0 0
Store 1 Inc 1 1

Store 1 1

Michael Kuhn Advanced MPI and Debugging 29 / 39



Error Classes Debugging

• Example: Race condition
• Incrementing consists of three steps

1. Loading the variable
2. Modifying the variable
3. Storing the variable

• Have to be performed atomically

• Two new error classes
1. Deadlocks
2. Race conditions

T0 T1 V
Load 0 0
Inc 1 0
Store 1 1

Load 1 1
Inc 2 1
Store 2 2

T0 T1 V
Load 0 0
Inc 1 Load 0 0
Store 1 Inc 1 1

Store 1 1

Michael Kuhn Advanced MPI and Debugging 29 / 39



Error Classes Debugging

• Example: Race condition
• Incrementing consists of three steps

1. Loading the variable
2. Modifying the variable
3. Storing the variable

• Have to be performed atomically

• Two new error classes
1. Deadlocks
2. Race conditions

T0 T1 V
Load 0 0
Inc 1 0
Store 1 1

Load 1 1
Inc 2 1
Store 2 2

T0 T1 V
Load 0 0
Inc 1 Load 0 0
Store 1 Inc 1 1

Store 1 1

Michael Kuhn Advanced MPI and Debugging 29 / 39



Error Classes. . . Debugging

�

� �

�

• Deadlocks cause parallel applications to stop progressing
• Can have different causes, most often due to locking
• May not be reproducible if there is time-dependent behavior

• Error condition can be difficult to find
• Trying to lock an already acquired lock results in a deadlock
• Erroneous communication patterns (everyone waits for the right neighbor)

• Error effect is typically easy to spot
• Spinlocks or livelocks can look like computation, though

Michael Kuhn Advanced MPI and Debugging 30 / 39



Error Classes. . . Debugging

• Race conditions can lead to differing results
• Debugging often hides race conditions

• Error condition is often very hard to find
• Can be observed at runtime or be found by static analysis
• Modern programming languages like Rust can detect data races

• Error effect is sometimes not observable
• Slight variations in the results are not obvious
• The correct result cannot be determined for complex applications
• Repeating a calculation can be too costly

Michael Kuhn Advanced MPI and Debugging 31 / 39



Race Conditions Debugging

• Access to counter is not synchronized
• Race condition results in wrong value

• Output is non-deterministic
• Depends on timing, scheduling etc.
• Output is sometimes correct

• Compiler cannot help
• Developer has to spot error manually

1 static int counter = 0;

2

3 void* thread_func(void* data) {

4 (void)data;

5

6 for (int i = 0; i < 1000; i++) {

7 counter ++;

8 }

9

10 return NULL;

11 }

Michael Kuhn Advanced MPI and Debugging 32 / 39



Race Conditions Debugging

• Access to counter is not synchronized
• Race condition results in wrong value

• Output is non-deterministic
• Depends on timing, scheduling etc.
• Output is sometimes correct

• Compiler cannot help
• Developer has to spot error manually

$ ./race

counter =10000

$ ./race

counter =9753

$ ./race

counter =10000

$ ./race

counter =10000

$ ./race

counter =9244

Michael Kuhn Advanced MPI and Debugging 32 / 39



Race Conditions. . . Debugging

• Helgrind is part of Valgrind
• Detects synchronization errors in C,

C++ and Fortran
• Supports POSIX threads
• Also works with OpenMP but output

can be confusing

• Supports three classes of errors
1. Misuse of POSIX threads API
2. Lock ordering problems
3. Data races

• Helgrind analyzes memory access
• Happens-before dependency graph

$ valgrind --tool=helgrind ./race

Helgrind , a thread error detector

[...]

Possible data race during read of

↩→ size 4 at 0x404038 by thread #3

Locks held: none

at 0x401157: [...]

This conflicts with a previous write

↩→ of size 4 by thread #2

Locks held: none

at 0x401160: [...]

Address 0x404038 is 0 bytes

↩→ inside data symbol

↩→ "counter"

Michael Kuhn Advanced MPI and Debugging 33 / 39



Race Conditions. . . Debugging

• Thread sanitizer can detect thread bugs
• Data races
• Races on mutexes, file descriptors,

barriers etc.
• Destroying locked mutexes
• Signal-unsafe behavior
• Potential deadlocks
• . . . and more

• Sanitizers are offered by the compiler
• Can instrument code at compile time
• Instruments memory access

instructions

$ ./race -sanitize

==================

WARNING: ThreadSanitizer: data race

Read of size 4 at 0x000000404068

↩→ by thread T2:

#0 [...]

Previous write of size 4 at

↩→ 0x000000404068 by thread T1:

#0 [...]

Location is global '<null >' at

↩→ 0x000000000000

↩→ (...+0 x000000404068)

Michael Kuhn Advanced MPI and Debugging 34 / 39



Deadlocks Debugging

• Mutex is locked but never unlocked
• Application hangs immediately
• No output is produced

• Reason can be hard to determine
• Check stack traces with GDB

• thread apply all bt

• Unwieldy with many threads

• Difficult to determine whether
deadlocked or progressing

• Helgrind will show held locks

1 static int counter = 0;

2 static pthread_mutex_t mutex =

3 PTHREAD_MUTEX_INITIALIZER;

4

5 void* thread_func(void* data) {

6 (void)data;

7

8 for (int i = 0; i < 1000; i++) {

9 pthread_mutex_lock (&mutex);

10 counter ++;

11 }

12

13 return NULL;

14 }

Michael Kuhn Advanced MPI and Debugging 35 / 39



Deadlocks Debugging

• Mutex is locked but never unlocked
• Application hangs immediately
• No output is produced

• Reason can be hard to determine
• Check stack traces with GDB

• thread apply all bt

• Unwieldy with many threads

• Difficult to determine whether
deadlocked or progressing

• Helgrind will show held locks

$ valgrind --tool=helgrind ./dead

Helgrind , a thread error detector

[...]

Thread #2: Exiting thread still

↩→ holds 1 lock

at 0x4877EA0: [...]

Michael Kuhn Advanced MPI and Debugging 35 / 39



Deadlocks. . . Debugging

• Lock ordering might lead to deadlocks
• Relevant if multiple locks are involved
• Locking should occur in same order

• Example
• Thread 0 locks m[0]
• Thread 1 locks m[1]
• Thread 0 tries to lock m[1]

• Thread 1 tries to lock m[0]

• Helgrind can detect lock order problems

• Thread sanitizer works as well

1 void* thread_func(void* data) {

2 uint64_t id = (uint64_t)data;

3 int j = id % 2;

4 int k = (id + 1) % 2;

5

6 for (int i = 0; i < 1000; i++) {

7 pthread_mutex_lock (&m[j]);

8 pthread_mutex_lock (&m[k]);

9 counter ++;

10 pthread_mutex_unlock (&m[k]);

11 pthread_mutex_unlock (&m[j]);

12 }

13

14 return NULL;

15 }

Michael Kuhn Advanced MPI and Debugging 36 / 39



Deadlocks. . . Debugging

• Lock ordering might lead to deadlocks
• Relevant if multiple locks are involved
• Locking should occur in same order

• Example
• Thread 0 locks m[0]
• Thread 1 locks m[1]
• Thread 0 tries to lock m[1]

• Thread 1 tries to lock m[0]

• Helgrind can detect lock order problems

• Thread sanitizer works as well

$ valgrind --tool=helgrind ./lock

Thread #3: lock order "0 x4040A0

↩→ before 0x4040C8" violated

Observed (incorrect) order is:

↩→ acquisition of lock at

↩→ 0x4040C8

followed by a later acquisition of

↩→ lock at 0x4040A0

Required order was established by

↩→ acquisition of lock at

↩→ 0x4040A0

followed by a later acquisition of

↩→ lock at 0x4040C8

Michael Kuhn Advanced MPI and Debugging 36 / 39



Deadlocks. . . Debugging

• Lock ordering might lead to deadlocks
• Relevant if multiple locks are involved
• Locking should occur in same order

• Example
• Thread 0 locks m[0]
• Thread 1 locks m[1]
• Thread 0 tries to lock m[1]

• Thread 1 tries to lock m[0]

• Helgrind can detect lock order problems

• Thread sanitizer works as well

$ ./lock -sanitize

WARNING: ThreadSanitizer:

↩→ lock -order -inversion

↩→ (potential deadlock)

Cycle in lock order graph: M9

↩→ (0 x0000004040c0) => M10

↩→ (0 x0000004040e8) => M9

Mutex M10 acquired here while

↩→ holding mutex M9 in thread

↩→ T1:

#0 [...]

Mutex M9 acquired here while

↩→ holding mutex M10 in

↩→ thread T2:

#0 [...]

Michael Kuhn Advanced MPI and Debugging 36 / 39



MPI Debugging Debugging

• MPI problems are harder to debug
• Application is distributed across several nodes
• Application is split into many processes

• There are debuggers for parallel applications
• Arm DDT (part of Arm Forge, formerly Allinea DDT)
• TotalView
• Eclipse Parallel Tools Platform (PTP)

• Another approach is static analysis
• MPI-Checker can analyze MPI applications

[Droste et al., 2015] [Alexander Droste, 2021]

Michael Kuhn Advanced MPI and Debugging 37 / 39



MPI Debugging. . . Debugging

• Non-blocking functions require waiting
• Otherwise, it is not clear when

buffer can be reused
• MPI_Wait is missing

• Errors might be hard to observe
• Works correctly most of the time
• Behavior is timing-dependent

and non-deterministic

1 void mysend(char* str , char* buf) {

2 MPI_Request req;

3

4 MPI_Isend(str , 100000 , MPI_CHAR ,

5 (rank + 1) % size ,

6 0, MPI_COMM_WORLD , &req);

7 MPI_Recv(buf , 100000 , MPI_CHAR ,

8 (size + rank - 1) % size ,

9 0, MPI_COMM_WORLD ,

10 MPI_STATUS_IGNORE);

11

12 printf("%d: %s", rank , buf);

13 }

Michael Kuhn Advanced MPI and Debugging 38 / 39



MPI Debugging. . . Debugging

• Path-sensitive checks
• Clang’s static analyzer (LLVM 3.9)
• Double non-blocking without wait
• Missing wait for non-blocking operations
• Waiting without non-blocking call

• Abstract syntax tree checks
• Clang-Tidy (LLVM 4.0)
• Type mismatches when communicating
• Incorrect referencing of buffers

$ scan -build -enable -checker

↩→ optin.mpi.MPI -Checker mpicc

↩→ -std=c11 -Wall -Wextra

↩→ -Wpedantic isend.c -o isend

isend.c:15:2: warning: Request

↩→ 'req ' has no matching wait.

↩→ [optin.mpi.MPI -Checker]

MPI_Recv(buf , 100000 , MPI_CHAR ,

^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 warning generated.

Michael Kuhn Advanced MPI and Debugging 38 / 39



Outline

Advanced MPI and Debugging

Review

Introduction

One-Sided Communication

Profiling Interface

Debugging

Summary



Summary Summary

• MPI has support for basic and complex operations
• Point-to-point and collective communication involved multiple processes
• One-sided communication only involves one process at best

• MPI’s profiling interface allows instrumenting the implementation
• Can be used for debugging and performance analysis

• Parallel debugging is more complicated than normal debugging
• Race conditions and deadlocks can be timing-dependent and non-deterministic
• MPI applications are distributed and therefore harder to handle

Michael Kuhn Advanced MPI and Debugging 39 / 39



References

[Alexander Droste, 2021] Alexander Droste (2021). MPI-Checker.
https://github.com/0ax1/MPI-Checker.

[Droste et al., 2015] Droste, A., Kuhn, M., and Ludwig, T. (2015). MPI-checker: static analysis
for MPI. In Finkel, H., editor, Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, LLVM 2015, Austin, Texas, USA, November 15, 2015, pages 3:1–3:10. ACM.

[Message Passing Interface Forum, 2015] Message Passing Interface Forum (2015). MPI: A
Message-Passing Interface Standard Version 3.1.
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/mpi31-report.htm.

https://github.com/0ax1/MPI-Checker
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/mpi31-report.htm

	Advanced MPI and Debugging
	Review
	Introduction
	One-Sided Communication
	Profiling Interface
	Debugging
	Summary

	Appendix
	References
	



