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Data Reduction Review

• Which technology improves at the fastest rate?
1. Storage capacity
2. Storage throughput
3. Network throughput
4. Memory throughput
5. Computation
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Data Reduction Review

• Which overhead does deduplication introduce?
1. Processor utilization
2. Main memory utilization
3. Storage utilization
4. All of the above
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Data Reduction Review

• Which overhead does compression introduce?
1. Processor utilization
2. Main memory utilization
3. Storage utilization
4. All of the above
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Data Reduction Review

• Which compression algorithm would you use for archival?
1. lz4
2. lz4hc
3. xz
4. zstd
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Exascale Motivation

• Supercomputers are getting more powerful all the time
• Storage systems get more capacity and throughput
• Scalability requirements are increased by higher process counts

• Amount of data keeps growing
• Supercomputers have more than 1 PB of main memory
• Even at 1 TB/s, a checkpoint would take more than 15 minutes

• Storage hardware is becoming more efficient
• Software has to keep up with efficiency increases
• I/O stacks have traditionally been heavy-weight
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Exascale. . . Motivation

• One file per process does not scale
• TaihuLight has more than 40,000 compute nodes
• Large systems can have more than 10,000,000 cores

• POSIX is still widely used
• Strict coherence and consistency requirements
• Changes have to be visible globally immediately

• Traditional file systems are often implemented in the kernel
• Other components already bypass the kernel due to performance
• For example, InfiniBand uses kernel bypass to reduce overhead
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Memory and Storage Hierarchy Hardware

• Memory and storage hierarchy has several levels
• L1, L2, L3 cache, RAM, SSD, HDD and tape

• Huge latency gap between RAM and SSD
• Significant performance degradation if data is not in RAM
• Network causes additional overhead in distributed contexts

• Gap is especially pronounced on supercomputers
• Data is either locally in RAM or in the parallel distributed file system

• New technologies are supposed to close this gap
• NVRAM, NVMe, 3D XPoint etc.
• Introduces additional hierarchy levels
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Memory and Storage Hierarchy. . . Hardware

• Very low latency between CPU and caches
• One cycle takes 0.5–0.33 ns (2–3 GHz)
• RAM is already significantly slower

• There is a factor of 1,000 between RAM and SSD

• Network latency in distributed systems

• Multiple intermediate levels in future systems

• NVRAM will also offer novel approaches

Level Latency
L1 Cache ≈ 1 ns
L2 Cache ≈ 5 ns
L3 Cache ≈ 10 ns

RAM ≈ 100 ns

NVRAM ≈ 1,000 ns
NVMe ≈ 10,000 ns

SSD ≈ 100,000 ns
HDD ≈ 10,000,000 ns
Tape ≈ 50,000,000,000 ns

[Bonér, 2012] [Huang et al., 2014]
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Memory and Storage Hierarchy. . . Hardware

[Bonér, 2012]
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Memory and Storage Hierarchy. . . Hardware

[Gorda, 2016]
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Exascale Hardware

[Gorda, 2013]

• I/O nodes are equipped with burst buffers and close to the compute nodes

• Network between I/O nodes and storage servers is slower
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Exascale. . . Hardware

• I/O nodes can take over additional tasks
• Certain computations and transformations
• Scheduling and aggregating I/O operations

• Data can be reorganized for more efficient access
• For instance, row- and column-wise storage
• Requires knowledge about the underlying data format

• Computational power is higher closer to the compute nodes
• Makes the most sense while data is being produced
• Care has to be taken to not influence performance negatively
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Burst Buffers Hardware

• I/O behavior is often not uniform
• Applications compute and then write a shared checkpoint
• High I/O load during checkpointing, no I/O activity afterwards

• I/O spikes can slow down applications
• Multiple applications performing I/O in parallel
• Storage systems are usually not designed to handle high spikes

• Example Mistral: ≈ 20 TB/s (compute nodes) vs. ≈ 0.5 TB/s (file system)

• Guaranteeing high throughput can become expensive
• HDDs for capacity, SSDs for throughput (and latency)
• Network introduces additional performance constraints
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Burst Buffers. . . Hardware

• Applications do not coordinate their I/O phases
• Could be used to keep the I/O load balanced
• Very complex to realize since it depends on timing etc.

• Involves the application, the scheduler and the file system

• File systems are usually shared resources
• There are quality of service approaches for I/O
• Applications could communicate their requirements to the scheduler
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Quiz Hardware

• How much storage bandwidth is used on average?
1. 99 %
2. 50 %
3. 33 %
4. 5 %
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Burst Buffers. . . Hardware

[Vildibill, 2015]
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Burst Buffers. . . Hardware

• Compute nodes achieve
higher throughput

• Up to 100 GiB/s instead of
10–20 GiB/s

• No change for slow
applications

• Applications finish earlier
• Can spend more time

performing computation

[Liu et al., 2012]
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Burst Buffers. . . Hardware

• No throughput changes
on storage servers

• Depends on number
of storage servers

• Utilization increased
• Idle times are reduced

[Liu et al., 2012]
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Burst Buffers. . . Hardware

• Burst buffers allow saving significant amounts of money
• Storage systems do not have to be designed to handle high I/O spikes
• Allows using a smaller storage system or one with less throughput

• Might also allow using slower storage technologies
• Ethernet instead of InfiniBand (or cheaper InfiniBand)
• HDDs with 5,400 RPM instead of 7,200 RPM

• Makes it possible to increase device utilization
• Burst buffers can also absorb problematic I/O patterns such as random I/O
• I/O operations are “pre-processed” and then forwarded to storage system

Michael Kuhn Current and Future Developments 16 / 41



Accelerators Hardware

• Data reduction etc. can be compute-intensive
• Deduplication, compression etc. require compute power

• GPUs are often not suitable due to data transfer overhead
• ≈ 32 GB/s (PCIe 4.0) to ≈ 64 GB/s (PCIe 5.0)

• Several acceleration interfaces could be used in the future
• Intel’s processors support QuickAssist with DEFLATE and LZS (since Haswell)
• Intel is working on socketed accelerators, which can access RAM directly
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Lustre Software

• Classical parallel distributed file systems are not enough anymore
• Should serve as the basis for future storage systems
• They are the only production-ready solution at the moment

• Lustre is in active development [Gorda, 2016]
• Encryption
• Compression
• Complex data layouts
• Further I/O optimizations
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Lustre. . . Software

• Applications and data formats have different data distribution requirements
• Small files should only be distributed across a few OSTs
• Large files should be distributed across as many OSTs as possible

• Lustre can adapt striping parameters intelligently
• Goal is to minimize overhead and maximize performance

[Gorda, 2016]
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Lustre. . . Software

• Replicating files can be useful for popular data
• Replication can be set on a per-file basis
• Can be used to achieve high availability, robustness, higher read throughput, migration

across storage classes etc.

• Synchronization is done in the background

[Gorda, 2016]
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Lustre. . . Software

• Small files should be stored directly on the MDT
• Similar to optimizations in ext4, ZFS etc.
• Can reduce communication overhead by not

talking to OSTs
• Potential for further optimizations such as

readahead

• MDTs are typically optimized for small accesses
• Large accesses still handled by the OSTs

• Data might have to be migrated when files grow

[Gorda, 2016]
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Lustre. . . Software

• Metadata operations are usually small
• Corresponds to high network overhead

• Caching allows aggregating multiple operations
• Requires locks to avoid conflicts from

concurrent operations
• Example: Lock a directory and create many files

within it
[Gorda, 2016]
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POSIX Software

• POSIX is still a major limitation for I/O performance and scalability
• POSIX is very portable but poses a performance bottleneck

• There are a few existing alternatives
• MPI-IO still uses the POSIX interface anyway
• POSIX file systems are used locally in many cases

• New interfaces and semantics are being investigated
• Object stores often provide enough features for HPC I/O
• When using POSIX, its semantics is usually relaxed
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POSIX. . . Software

• One idea is to not provide global coherence anymore
• File system is instead partitioned into non-coherent zones
• For instance, using burst buffers and forwarders

• Example: Cache domains as used in BeeGFS
• Applications are running in different domains
• Data is first written to the non-coherent cache
• Caches can be located on node-local storage
• Data is then migrated from the cache into the file system

Michael Kuhn Current and Future Developments 24 / 41



POSIX. . . Software

• Non-coherent domains can scale
• Data does not have to be

synchronized across all applications
• Applications typically do not access

same output data

• Flushed to file system afterwards
• Similar to burst buffer concept

[ThinkParQ, 2017]
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DAOS Software

• DAOS is a holistic approach for a new storage stack
• Distributed Application Object Storage (DAOS)

• DAOS supports multiple storage models
• Arrays and records as base objects
• Objects consist of arrays and records (key-array)
• Containers contain objects
• Storage pools consist of containers

• DAOS supports versioning data
• Operations are performed as transactions
• Transactions are merged and persisted as epochs

• Makes extensive use of modern storage technologies
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Quiz Software

• How much overhead does the I/O software stack introduce?
1. 99 %
2. 50 %
3. 33 %
4. < 1 %
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DAOS. . . Software

• I/O latencies are becoming problematic
• Additional software layers introduce overhead

• I/O granularity needs to be adapted
• Often still at 1 MiB, soon 16 MiB, which might cause additional conflicts

• Network and storage devices require larger accesses

[Dilger, 2017]
Michael Kuhn Current and Future Developments 28 / 41



DAOS. . . Software

• I/O is typically performed synchronously
• Applications have to wait for the slowest process/thread
• Results in waiting times in which processors are idle

• I/O variability is the norma
• Storage systems are shared resources, others can influence performance
• Quality of service or other performance guarantees are rare

[Gorda, 2013]
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DAOS. . . Software

• I/O should happen asynchronously to reduce idle times
• Processes/threads do not have to wait for others anymore

• Raises the problem of file consistency
• Currently, a file is consistent when all processes have finished I/O
• File is only consistent as long as it is not modified again

[Gorda, 2013]
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DAOS. . . Software

• Solution: Transactions and epochs
• Operations are performed in

transactions
• Multiple transactions are merged

into an epoch

• Epochs are globally consistent
• Epochs are on a per-object basis
• Eliminates coherence problems

when reading data
• Epochs can use copy on write for

efficiently storing versions

[Dilger, 2017]
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DAOS. . . Software

• DAOS supports several I/O interfaces natively
• Makes supporting legacy applications much easier

• HDF5 is mapped onto DAOS’s objects
• An HDF5 file corresponds to a DAOS container
• Mapping can be used to reorganize data for efficient access etc.

• Other I/O interfaces can be added on top
• POSIX and MPI-IO for legacy applications
• Big data interfaces for MapReduce etc.
• S3, NFS, block devices etc.
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DAOS. . . Software

• Functionality moved to user space
• Kernel bypass to eliminate costly

context switches

• Software stack for NVRAM/NVMe
• HDDs are controlled by existing

file systems such as Lustre

[Dilger, 2017]
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DAOS. . . Software

• Hot and warm data managed by DAOS
• Cold data managed by file system

• Prestage migrates data into cache
• Persist stores data

• Import/export to/from cold storage
• File systems like Lustre
• Object stores like S3

[Dilger, 2017]
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DAOS. . . Software

[Dilger, 2017]
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Big Data Software

• Big data technologies are widely used
• Big data software is often not as performant as HPC software

• Hadoop is an important big data component and uses HDFS
• Data is copied to local storage devices
• Communication happens via HTTP

• HPC software increasingly supports big data use cases
• Lustre, OrangeFS etc.

• Problem: Two completely separate software stacks
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Big Data. . .

• Big data often uses
commodity hardware

• Ethernet, local storage,
HTTP etc.

• HPC tuned for high
performance

• InfiniBand, dedicated
storage nodes,
accelerators etc.

[Russell, 2018] [Andre et al., 2018]
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Big Data. . .

• OrangeFS offers several I/O
interfaces

• POSIX compatibility via
kernel module, FUSE or
direct interface

• HPC support via MPI-IO
• Web interfaces for cloud
• Big data support using

Hadoop interface

[OrangeFS Development Team, 2021]
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Big Data. . . Software

• HDFS uses node-local storage
• Best case: Data can be

accessed locally

• OrangeFS uses storage servers
• Data is always accessed

remotely

[Li et al., 2016]
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Big Data. . . Software

• Approaches from the big data and cloud fields are also interesting for HPC
• Elasticity could allow adapting file systems dynamically
• Adding and removing file system servers on demand

• Object stores are being used for storing data
• POSIX file system functionalities are often not required
• MPI-IO’s features can be mapped to object stores
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Summary Summary

• New hardware technologies will change the storage stack
• New hierarchy levels provided by NVRAM and NVMe
• Systems will become complexer but also more performant
• Burst buffers offer possibilities for reducing costs
• Data transformation can be deployed across the stack

• Current I/O software is being redesigned from the ground up
• Applications can continue using existing high-level interfaces
• POSIX limits performance and is often not necessary
• New approaches from the big data and cloud fields will be integrated
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Lustre Future Development

• Encryption is increasingly important
• Governments, military, classified research etc.

• Support for multiple access levels is necessary
• Unclassified, confidential, secret, top secret
• Data is not allowed to be transferred across levels

• Authentication and authorization are important components
• Can be implemented using Kerberos, which is widely used

• Data is encrypted in flight to prevent unauthorized access
• Support for encryption at rest has been recently added
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