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Data Reduction

« Which technology improves at the fastest rate?

Michael Kuhn

= PN

Storage capacity
Storage throughput
Network throughput
Memory throughput
Computation
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Data Reduction

« Which overhead does deduplication introduce?
1. Processor utilization
2. Main memory utilization
3. Storage utilization
4. All of the above
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Data Reduction

« Which overhead does compression introduce?

Michael Kuhn

1. Processor utilization

2. Main memory utilization
3.

4. All of the above

Storage utilization
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Data Reduction

« Which compression algorithm would you use for archival?
1. 1z4
2. lzdhc
3.

4. zstd

Michael Kuhn

Xz
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Exascale Motivation

+ Supercomputers are getting more powerful all the time

« Storage systems get more capacity and throughput

« Scalability requirements are increased by higher process counts
« Amount of data keeps growing

« Supercomputers have more than 1 PB of main memory
« Even at 1TB/s, a checkpoint would take more than 15 minutes

+ Storage hardware is becoming more efficient

« Software has to keep up with efficiency increases

« 1/O stacks have traditionally been heavy-weight

Michael Kuhn Current and Future Developments 2/41



Exascale... Motivation

+ One file per process does not scale

« TaihuLight has more than 40,000 compute nodes

« Large systems can have more than 10,000,000 cores
« POSIX is still widely used

« Strict coherence and consistency requirements
« Changes have to be visible globally immediately

« Traditional file systems are often implemented in the kernel

« Other components already bypass the kernel due to performance

« For example, InfiniBand uses kernel bypass to reduce overhead
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Memory and Storage Hierarchy Hardware

« Memory and storage hierarchy has several levels
« L1, L2, L3 cache, RAM, SSD, HDD and tape
« Huge latency gap between RAM and SSD

« Significant performance degradation if data is not in RAM

+ Network causes additional overhead in distributed contexts
« Gap is especially pronounced on supercomputers

« Data is either locally in RAM or in the parallel distributed file system

New technologies are supposed to close this gap

« NVRAM, NVMe, 3D XPoint etc.
« Introduces additional hierarchy levels
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Memory and Storage Hierarchy...

+ Very low latency between CPU and caches

Michael Kuhn

+ One cycle takes 0.5-0.33 ns (2-3 GHz)
+ RAM is already significantly slower

Hardware
Level Latency
L1 Cache ~ 1ns
L2 Cache ~ 5ns
L3 Cache ~ 10 ns
RAM ~ 100 ns

Current and Future Developments

[Bonér, 2012] [Huang et al., 2014]
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Memory and Storage Hierarchy...

+ Very low latency between CPU and caches

+ One cycle takes 0.5-0.33 ns (2-3 GHz)
+ RAM is already significantly slower

« There is a factor of 1,000 between RAM and SSD

Michael Kuhn

« Network latency in distributed systems

Current and Future Developments

Hardware

Level Latency

L1 Cache ~ 1ns
L2 Cache ~ 5ns
L3 Cache ~ 10 ns
RAM ~ 100 ns
SSD ~ 100,000 ns
HDD ~ 10,000,000 ns
Tape | = 50,000,000,000 ns

[Bonér, 2012] [Huang et al., 2014]
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Memory and Storage Hierarchy...

+ Very low latency between CPU and caches

+ One cycle takes 0.5-0.33 ns (2-3 GHz)
+ RAM is already significantly slower

« There is a factor of 1,000 between RAM and SSD

« Network latency in distributed systems

+ Multiple intermediate levels in future systems

Michael Kuhn

« NVRAM will also offer novel approaches

Current and Future Developments

Hardware
Level Latency
L1 Cache ~ 1ns
L2 Cache ~ 5ns
L3 Cache ~ 10 ns
RAM ~ 100 ns
NVRAM ~ 1,000 ns
NVMe ~ 10,000 ns
SSD ~ 100,000 ns
HDD ~ 10,000,000 ns
Tape | = 50,000,000,000 ns

[Bonér, 2012] [Huang et al., 2014]
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Hardware

Memory and Storage Hierarchy...

Latency Mumbers Every Programmer Should Koo

M Main nenory reference; 188ns

M Send 1KB over 1Gbps netuork: 18us

M Read 1B sesuentially

Hins
from 55D: Lms
- .
L1 cache reference: 8.5ns = = Disk sesk! 18ns

B Branch mispradict: Sns

L2 cache reference: 7ns

Hutex Lock/unlock: 25 ns

W 186ns

Michael Kuhn

W 16us

550 random read (16k/s 5300
158us

m m Read LI ssquentislly
| fron nenoru; 256 1S

Round trig in same

]
BN dstacenter! 500 us

Hins

[Bonér, 2012]
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Memory and Storage Hierarchy... Hardware

Compute

Processor Compute

Local memory is now faster
&in processor package ——

Memory Bus Intel® DIMMs based

Much larger memory ou
capacities keep datain_ _ o =p 3D XPoint
local memory = === Technology

Intel® Optane™
Technology SSDs

Higher Bandwidth
Lower Latency and Capacity

[Gorda, 2016]
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Exascale Hardware

Exascale Machine Shared Storage

Site Storage
2 2 2 2 2 2 2 — Network @20 TB/s

Exascale I/0

Eliite Nodes Disk
Burst buffer Storage Metadata
Compute NVRAM Servers NVRAM
Nodes @ 200 TB/s

[Gorda, 2013]

+ 1/0 nodes are equipped with burst buffers and close to the compute nodes

+ Network between 1/O nodes and storage servers is slower

Michael Kuhn Current and Future Developments 8/41



Exascale... Hardware

« /O nodes can take over additional tasks

« Certain computations and transformations
 Scheduling and aggregating 1/O operations

« Data can be reorganized for more efficient access

« For instance, row- and column-wise storage

« Requires knowledge about the underlying data format
« Computational power is higher closer to the compute nodes

« Makes the most sense while data is being produced

« Care has to be taken to not influence performance negatively

Michael Kuhn Current and Future Developments 9/41



Burst Buffers Hardware

« 1/O behavior is often not uniform

« Applications compute and then write a shared checkpoint
« High 1/0 load during checkpointing, no I/O activity afterwards

+ 1/0 spikes can slow down applications

« Multiple applications performing 1/0 in parallel
« Storage systems are usually not designed to handle high spikes

« Example Mistral: ~ 20 TB/s (compute nodes) vs. =~ 0.5 TB/s (file system)
« Guaranteeing high throughput can become expensive

« HDDs for capacity, SSDs for throughput (and latency)
« Network introduces additional performance constraints

Michael Kuhn Current and Future Developments 10/41



Burst Buffers... Hardware

« Applications do not coordinate their I/O phases

« Could be used to keep the I/0O load balanced
« Very complex to realize since it depends on timing etc.

« Involves the application, the scheduler and the file system
« File systems are usually shared resources

« There are quality of service approaches for 1/0

« Applications could communicate their requirements to the scheduler

Michael Kuhn Current and Future Developments 11/41



Quiz

« How much storage bandwidth is used on average?

Michael Kuhn

1. 9%
2. 50 %
S

4. 5%

33%
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Burst Buffers... Hardware

Michael Kuhn

Analysis of a major HPC production storage system
* 99% of the time, storage BW utilization < 33% of max
* 70% of the time, storage BW utilization < 5% of max

BURST BUFFER
Absorbs
Peak Load

Burst
Bandwidth

FILESYSTEM
Handles
Sustained Load

System 1/O Rate

Burst
Capacity

Time

[Vildibill, 2015]
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Burst Buffers... Hardware

1000 =~ wplasmaPhysics mTurbulence1 = AstroPhysics 1000 = plasmaPhysics ® Turbulence 1 = AstroPhysics
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Fig. 5: Ten second average data transfer rate for the compute nodes observed during the multiapplication simulations.

[Liu et al., 2012]
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Burst Buffers... Hardware

100 100 =
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Fig. 6: Ten second average data transfer rate for the external storage system observed during the multiapplication simulations.

[Liu et al., 2012]
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Burst Buffers... Hardware

« Burst buffers allow saving significant amounts of money

« Storage systems do not have to be designed to handle high 1/0 spikes

« Allows using a smaller storage system or one with less throughput
« Might also allow using slower storage technologies

« Ethernet instead of InfiniBand (or cheaper InfiniBand)
« HDDs with 5,400 RPM instead of 7,200 RPM

« Makes it possible to increase device utilization

« Burst buffers can also absorb problematic 1/O patterns such as random 1/O

« 1/0 operations are “pre-processed” and then forwarded to storage system

Michael Kuhn Current and Future Developments 16/41



Accelerators Hardware

 Data reduction etc. can be compute-intensive
+ Deduplication, compression etc. require compute power
o GPUs are often not suitable due to data transfer overhead
« ~ 32GB/s (PCle 4.0) to ~ 64 GB/s (PCle 5.0)
« Several acceleration interfaces could be used in the future
« Intel’s processors support QuickAssist with DEFLATE and LZS (since Haswell)

« Intel is working on socketed accelerators, which can access RAM directly

Michael Kuhn Current and Future Developments 17/41
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Lustre Software

+ Classical parallel distributed file systems are not enough anymore
« Should serve as the basis for future storage systems
+ They are the only production-ready solution at the moment

o Lustre is in active development [Gorda, 2016]

» Encryption

« Compression

« Complex data layouts

« Further 1/O optimizations

Michael Kuhn Current and Future Developments 18/41



Lustre... Software

« Applications and data formats have different data distribution requirements

« Small files should only be distributed across a few OSTs
o Large files should be distributed across as many OSTs as possible

« Lustre can adapt striping parameters intelligently

« Goal is to minimize overhead and maximize performance

Example progressive file layout with 3 components

1 stripe 4 stripes 32 stripes
[0, 2MB) [2MB, 256MB) [256MB, «)

[Gorda, 2016]

Michael Kuhn Current and Future Developments 19/41



Lustre... Software

 Replicating files can be useful for popular data

« Replication can be set on a per-file basis
« Can be used to achieve high availability, robustness, higher read throughput, migration
across storage classes etc.

« Synchronization is done in the background

Object j (primary, preferred)

- Object k (stale) drzgqecd

Overlapping (mirror) layout
[Gorda, 2016]
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Lustre... Software

« Small files should be stored directly on the MDT

« Similar to optimizations in ext4, ZFS etc.

[ open, write, attributes )
« Can reduce communication overhead by not Client - >  MDS
talking to OSTs a i -
« Potential for further optimizations such as layout, lock, attributes, read
readahead Small file 10 directly to MDS
+ MDTs are typically optimized for small accesses [Gorda, 2016]

« Large accesses still handled by the OSTs

+ Data might have to be migrated when files grow

Michael Kuhn Current and Future Developments 21/41



Lustre... Software

+ Metadata operations are usually small ) asynchronous flush |
; >  MDS
Client >
; ) (-

« Corresponds to high network overhead

« Caching allows aggregating multiple operations Cache |

« Requires locks to avoid conflicts from —

concurrent operations Client Metadata Operations Cache

« Example: Lock a directory and create many files [Gorda, 2016]

within it

Michael Kuhn Current and Future Developments 22/41



POSIX Software

« POSIX is still a major limitation for I/O performance and scalability
« POSIXis very portable but poses a performance bottleneck
 There are a few existing alternatives

« MPI-IO still uses the POSIX interface anyway

« POSIX file systems are used locally in many cases

« New interfaces and semantics are being investigated

« Object stores often provide enough features for HPC 1/0
« When using POSIX; its semantics is usually relaxed

Michael Kuhn Current and Future Developments 23/41



POSIX...

Software

+ One idea is to not provide global coherence anymore
« File system is instead partitioned into non-coherent zones
- For instance, using burst buffers and forwarders

« Example: Cache domains as used in BeeGFS

« Applications are running in different domains
« Data is first written to the non-coherent cache
« Caches can be located on node-local storage

 Data is then migrated from the cache into the file system

Michael Kuhn Current and Future Developments 24/41



POSIX...

Non-coherent domains can scale

+ Data does not have to be
synchronized across all applications

« Applications typically do not access
same output data

Flushed to file system afterwards

« Similar to burst buffer concept

Michael Kuhn

Software
Cache- Cache- Cache-
Domain 1 Domain2 ™ Domainn
Non-coherent

Subdomains for
scalable Caching

- | .

N — _

non-coherent —4—
write_to_cache(
Per-Subdomain

Caches on NVM

cecssccseecsses

T ™
Global parallel Storage \ o _,__,f’/
Layer with traditional A A
Hard-Disks

[ThinkParQ, 2017]
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DAOS Software

« DAOS is a holistic approach for a new storage stack
« Distributed Application Object Storage (DAOS)
« DAOS supports multiple storage models

« Arrays and records as base objects
« Objects consist of arrays and records (key-array)
« Containers contain objects

« Storage pools consist of containers

DAOS supports versioning data

« Operations are performed as transactions
« Transactions are merged and persisted as epochs

Makes extensive use of modern storage technologies

Michael Kuhn Current and Future Developments 26/41



Quiz

« How much overhead does the 1/O software stack introduce?
1. 9%
2. 50%
3.

4. <1%

Michael Kuhn

33%
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Software
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DAOS... Software

« 1/0O latencies are becoming problematic
«+ Additional software layers introduce overhead

+ 1/0 granularity needs to be adapted
« Often still at 1 MiB, soon 16 MiB, which might cause additional conflicts

» Network and storage devices require larger accesses

= HDD ® Software stack = NAND ® Software stack = 3D XPoint™ M Software stack

msec vs. psec Usec vs. pysec nsec vs. psec

[Dilger, 2017]
Michael Kuhn Current and Future Developments 28/41



DAOS... Software

+ 1/0O is typically performed synchronously

« Applications have to wait for the slowest process/thread
« Results in waiting times in which processors are idle

+ 1/O variability is the norma

- Storage systems are shared resources, others can influence performance
« Quality of service or other performance guarantees are rare

[Gorda, 2013]
Michael Kuhn Current and Future Developments 29/41



DAOS... Software

+ 1/0 should happen asynchronously to reduce idle times
« Processes/threads do not have to wait for others anymore
+ Raises the problem of file consistency

« Currently, a file is consistent when all processes have finished 1/0
« File is only consistent as long as it is not modified again

[Gorda, 2013]

Michael Kuhn Current and Future Developments 30/41



DAOS... Software

Index

o+ NVRAM
s NVMe

+ Solution: Transactions and epochs

Being written

N\

« Operations are performed in
Committed

/ s \

Record extents

transactions

Version = epoch

+ Multiple transactions are merged
into an epoch

« Epochs are on a per-object basis
v3
« Eliminates coherence problems “

when reading data v2 -
« Epochs can use copy on write for
efficiently storing versions 4l _ “

[Dilger, 2017]
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DAOS...

Software

+ DAOS supports several /O interfaces natively

« Makes supporting legacy applications much easier
« HDF5 is mapped onto DAOS’s objects

« An HDF5 file corresponds to a DAOS container

« Mapping can be used to reorganize data for efficient access etc.
+ Other 1/O interfaces can be added on top

« POSIX and MPI-10 for legacy applications
 Big data interfaces for MapReduce etc.
« S3, NFS, block devices etc.

Michael Kuhn Current and Future Developments 32/41



DAOS... Software

+ Functionality moved to user space

« Kernel bypass to eliminate costly

context switches KA Object API

« Software stack for NVRAM/NVMe

« HDDs are controlled by existing
. NVRAM NVMe
file systems such as Lustre ﬁ e (optional)
Byte-granular data/metadata Bulk data

[Dilger, 2017]
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DAOS...

Software

+ Hot and warm data managed by DAOS
« Cold data managed by file system

+ Prestage migrates data into cache
+ Persist stores data

« Import/export to/from cold storage

« File systems like Lustre
« Object stores like S3

o
-
]
%]
o+
QD

o
o

podwy

Read/Write Read/Write

Hot DAOS tier: NVRAM (20%) + NAND(80%)
3x system memory

Warm DAOS tier: NVRAM (5%) + NAND(95%)
20x system memory

Cold External Tier: NAND/Disk
Lustre, MarFS, Swift/S3, ...

[Dilger, 2017]
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DAOS... Software

System Namespace
(Lustre MDTs)

e
P

HDF5 Container

POSIX-file Contginer

Lustre Files
(OSTs/MDTs)

Legacy Apps Well-behaved POSIX apps Data-model/domain- Libraries, binaries, user files,
Near-POSIX compliant Highly scalable specific library Migration path

[Dilger, 2017]
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Big Data Software

- Big data technologies are widely used
 Big data software is often not as performant as HPC software
« Hadoop is an important big data component and uses HDFS

« Data is copied to local storage devices
« Communication happens via HTTP

« HPC software increasingly supports big data use cases

« Lustre, OrangeFS etc.

+ Problem: Two completely separate software stacks

Michael Kuhn Current and Future Developments 36/41



Big Data...

« Big data often uses
commodity hardware

« Ethernet, local storage,
HTTP etc.
« HPC tuned for high
performance
« InfiniBand, dedicated

storage nodes,

accelerators etc.

Michael Kuhn

APPLICATION
LEVEL

Mahout, R and Applications

Applications and Community Codes

~ Hive Pig Sqoop Flume FORTRAN, C, C++ and IDEs
8
g
&
T Map-Reduce Storm Domain-specific Libraries ”
MIDDLEWARES 2 o = g
MANAGEMENT S . B Perf & =
a 5 Hbase BigTable S M:VolllE"’t‘ﬂoP Numerical ED:l;“"';g“iﬁ: &
E o (key-value store) HhACE RO Libraries (e.g, PAPI)
L =
3 5
g = " Lustre (Parallel Batch Scheduler | SYSt®
= HDFS (Hadoop File System) Fllo Systom) (g, SLURM) M"T'S';E‘"“
@
=
H ' ' ) )
e Virtual Machines and Cloud Services Containers
EYETER Containers (Kubernetes, Docker, etc.) (Singularity, Shifter, etc.)
SOFTWARE
LINUX DS VARIANT LINUX DS VARIANT
Ethernet Local Node  Commodity X86 Infiniband +  SAN + Local  X86 Racks + In-situ
CLUSTER Switches Storage Racks Ethernet Node GPUs or Processing
HARDWARE Swtiches Storage Accelerators.

DATA ANALYTICS ECOSYSTEM COMPUTATIONAL SCIENCE ECOSYSTEM

Figure 1: Different software ecosystems for high-end Data Analytics and for traditional Computational
Science. [Credit: Reed and Dongarra [66]]

[Russell, 2018] [Andre et al., 2018]
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Big Data...

OrangeFS

Other Open Source
Kernel Module . [ ther Open souree ] Direct Interface FusE
Client Interfaces =
Linux Programs Linux Programs Linux Programs
Lirur Linux
Widdleware Middeware Widdioware
Web Interfaces: WebDAV, $3, REST
P ) Linun
fo WeboAvGients || 53 clens ResT clnts e ]

Client Core [y — Direct Interface FUSE Interface

Module: WebDAV

Orangers Apache
Module: 53

Orangers Apache
Module: REST

« OrangeFS offers several 1/0
interfaces

« POSIX compatibility via

kernel module, FUSE or P

FUSE Shim
PVFS Library

PVFS Library

PVFS Library PVFS Library

ROMIO (PHO) Hadoop

Windows Client Hadoop
MapReduce

MPI Programs

OrangeFs
Hadoop Client

WP Libra
(several Avaonle)
Windows Kernel

OrangeFs
N shim

direct interface
« HPC support via MPI-IO
« Web interfaces for cloud

ROMIO (pl-0
that supports Orangefs)

Dokan Mount
Driver

PVFS Library Direct Interface

Client Service
PVFS Library

PVFS Library

«+ Big data support using

Hadoop interface

[OrangeFS Development Team, 2021]
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Big Data...

Software

« HDFS uses node-local storage

« Best case: Data can be
accessed locally

« OrangeFS uses storage servers

« Data is always accessed
remotely

Hadoop Hadoop Hadoop
MapReduce MapReduce MapReduce

Hadoop Hadoop Hadoop Hadoop
MapReduce @ MapReduce B MapReduce B MapReduce

Fig. 2: Typical Hadoop with HDFS local storage (HDFS in short).

Hadoop

MapReduce

OrangeFS

Fig. 3: Hadoop with the OrangeFS dedicated storage (OFS in short).
[Liet al., 2016]
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Big Data... Software

« Approaches from the big data and cloud fields are also interesting for HPC

« Elasticity could allow adapting file systems dynamically

+ Adding and removing file system servers on demand
+ Object stores are being used for storing data

« POSIX file system functionalities are often not required

« MPI-IO’s features can be mapped to object stores

Michael Kuhn Current and Future Developments 40/ 41
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Summary Summary

« New hardware technologies will change the storage stack
« New hierarchy levels provided by NVRAM and NVMe
« Systems will become complexer but also more performant
« Burst buffers offer possibilities for reducing costs
« Data transformation can be deployed across the stack
« Current /O software is being redesigned from the ground up

- Applications can continue using existing high-level interfaces
« POSIX limits performance and is often not necessary
« New approaches from the big data and cloud fields will be integrated

Michael Kuhn Current and Future Developments 41/4
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Lustre

Encryption is increasingly important
« Governments, military, classified research etc.
Support for multiple access levels is necessary

« Unclassified, confidential, secret, top secret

« Data is not allowed to be transferred across levels
Authentication and authorization are important components
« Can be implemented using Kerberos, which is widely used

Data is encrypted in flight to prevent unauthorized access

« Support for encryption at rest has been recently added

Future Development
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