
Performance Analysis

Parallel Storage Systems
2024-06-17

Prof. Dr. Michael Kuhn
michael.kuhn@ovgu.de

Parallel Computing and I/O
Institute for Intelligent Cooperating Systems
Faculty of Computer Science
Otto von Guericke University Magdeburg
https://parcio.ovgu.de

mailto:michael.kuhn@ovgu.de
https://parcio.ovgu.de

Outline

Performance Analysis

Review

Introduction

Performance Measurement

Performance Assessment

Summary

Optimizations Review

• What is the difference between write-behind and write-through caching?
1. Write-behind writes to the device first and to the cache afterwards
2. Write-behind writes to the cache and the device at the same time
3. Write-through writes to the cache and the device at the same time
4. Write-through only writes to the device and circumvents the cache

Michael Kuhn Performance Analysis 1 / 46

Optimizations Review

• What does data sieving do?
1. Data sieving turns contiguous accesses into non-contiguous ones
2. Data sieving turns non-contiguous accesses into contiguous ones
3. Data sieving allows having holes in derived data types

Michael Kuhn Performance Analysis 1 / 46

Optimizations Review

• What does the Two Phase optimization do?
1. Split up file into domains and coordinate I/O operations among processes
2. Perform I/O on one process and distribute data to other processes
3. Read data after a write operation to check whether write was successful

Michael Kuhn Performance Analysis 1 / 46

Outline

Performance Analysis

Review

Introduction

Performance Measurement

Performance Assessment

Summary

Introduction Introduction

• Performance analysis can be hard to perform
• Software and hardware get more complex
• Many layers are involved and interact

• Performance analysis consists of two parts
• Performance measurement and assessment

• Measurement gives indication of actual performance
• Measuring correctly is a topic of its own

• Assessment to determine potential performance
• Important when buying a new storage system etc.

Parallel Application

Libraries and Middleware

Parallel Distributed File System

File System

Storage Devices

Michael Kuhn Performance Analysis 2 / 46

Introduction. . . Introduction

• Performance measurement
• How to measure performance?
• How long do measurements have to be?
• How often do measurements have to be repeated?
• Is it possible to eliminate external influences?

• Performance assessment
• Which performance can we potentially achieve?
• Which performance can we expect in practice?

Michael Kuhn Performance Analysis 3 / 46

Outline

Performance Analysis

Review

Introduction

Performance Measurement

Performance Assessment

Summary

Measurements Performance Measurement

• Measuring performance is a complex process
• Performance is influenced by caching, network, I/O etc.
• Which components are involved and have to be measured?
• Which performance can we expect on a given system?

• Our goal is to collect metrics quantitatively
• Metrics include runtime, throughput, latency and more
• The metrics to collect depend on the software and hardware

• Published measurements should be scientifically sound
• Other scientists should be able to reproduce your findings
• Measurements of metrics have errors that have to be accounted for

Michael Kuhn Performance Analysis 4 / 46

Quiz Performance Measurement

• Application A runs for 4.274 s, application B for 4.176 s. Which one is faster?
1. Application A
2. Application B
3. Difference is negligible, performance is the same
4. Not enough information

Michael Kuhn Performance Analysis 5 / 46

Measurements. . . Performance Measurement

• Single measurements are more or less random
• Processor might be busy with something else
• Some other application is currently occupying the network
• There is a certain variability for each component

• It is never enough to do a single measurement
• Always repeat measurements at least three times
• If you talk to physicists, they will probably say 30 times

• Averaging the metrics is also not enough
• There are important derived metrics, such as standard deviation etc.

Michael Kuhn Performance Analysis 6 / 46

Measurements. . . Performance Measurement

1 Benchmark #1: ./sincos -O2

2 Time (mean +- sig): 4.192 s +- 0.033 s [User: 4.181 s, System: 0.001 s]

3 Range (min .. max): 4.160 s .. 4.274 s 10 runs

4

5 Benchmark #2: ./sincos -O3

6 Time (mean +- sig): 4.191 s +- 0.016 s [User: 4.179 s, System: 0.001 s]

7 Range (min .. max): 4.176 s .. 4.221 s 10 runs

8

9 Summary

10 './sincos -O3 ' ran

11 1.00 +- 0.01 times faster than './sincos -O2 '

• Application A and B have the same performance
• Both previous results were extreme values (minimum and maximum)

Michael Kuhn Performance Analysis 7 / 46

Measurements. . . Performance Measurement

• There are two kinds of errors
1. Random errors

• Might be caused by operating system activity in the background
• Performance of most hardware varies a bit
• Larger variations are also possible due to hardware defects, load balancing etc.

2. Systematic errors

• Might be caused by wrong methodology/implementation
• For instance, you want to measure disk speed but hit the cache

Michael Kuhn Performance Analysis 8 / 46

Quiz Performance Measurement

• Which errors can we get rid of by repeating measurements?
1. Random and systematic errors
2. Random errors
3. Systematic errors
4. None

Michael Kuhn Performance Analysis 9 / 46

Measurements. . . Performance Measurement

• Always use a well-defined hardware/software environment
• Document the setup, including version numbers etc.

• Minimize external influence to keep random errors low
• Use resources exclusively if possible
• Do not run anything intensive in the background

• Increase measurement time and repeat measurements
• This helps canceling out random errors

• Compare results with expected performance
• “My application finishes in two hours. Could it finish in one?”
• This typically involves some kind of performance modeling

Michael Kuhn Performance Analysis 10 / 46

Measurements. . . Performance Measurement

• There is a wide range of benchmarks available
• For processors, caches, main memory, network etc.

• There are also many I/O benchmarks, each with a different focus
• IOzone, Bonnie, Bonnie++, PostMark, b_eff_io, FLASH I/O and many more
• We will look at three examples: fio, IOR and mdtest

• Benchmarks typically only cover certain access patterns
• This leads to many different benchmarks for different use cases

Michael Kuhn Performance Analysis 11 / 46

Example: fio [Axboe, 2021] Performance Measurement

• fio is a flexible I/O tester
• The main author is Jens Axboe, maintainer of Linux’s block layer

• He is also responsible for the cfq, noop and deadline schedulers
• Developed the blktrace tool and the splice system call

• fio is able to measure arbitrary workloads
• Typically requires many different specialized tests

• Usage is supported by so-called job files
• Users can set common and job-specific parameters
• Everything can also be controlled using the command line

• Limitation: Parallelism is only supported locally via processes/threads

Michael Kuhn Performance Analysis 12 / 46

Example: fio. . . Performance Measurement

• Operation types
• Read/write/mixed as well as sequential/random
• Buffered, direct or fsync to include or exclude cache’s influence

• Block size and total data size
• Single values as well as ranges
• File and thread counts for parallel workloads

• I/O engine
• Synchronuous, asynchronous, memory mapping and null
• Queue depth for asynchronous engines

• Preallocation and optimizations using fallocate and fadvise

• Focus on block allocation or certain optimizations

Michael Kuhn Performance Analysis 13 / 46

Example: fio. . . Performance Measurement

• Locks and alignment
• None, exclusive and non-exclusive read
• I/O can be aligned to stripes etc.

• Throughput limit
• To simulate background load

• Compressibility and deduplicatibility
• Current SSDs and file system compress data transparently

• Verification
• Check whether read data matches the written data

Michael Kuhn Performance Analysis 14 / 46

Example: fio. . . [Axboe, 2021] Performance Measurement

• Randomly read from 128 MiB large files
• Files are created automatically for the test

• Two processes job1 and job2 are used
• File names are also generated automatically

• Can also be specified using the command line
• fio --rw=randread --size=128m

--name job1 --name job2

1 [global]

2 rw=randread

3 size =128m

4

5 [job1]

6

7 [job2]

Michael Kuhn Performance Analysis 15 / 46

Example: fio. . . [Axboe, 2021] Performance Measurement

• Asynchronous I/O with a depth of 4
• Four asynchronous I/O operations are pending at once
• Might be necessary to achieve full performance

• Four processes write randomly using buffered I/O
• Process-local 64 MiB files with an access size of 32 KiB

• CLI: fio --name=random-writers ...

1 [random -writers]

2 ioengine=libaio

3 iodepth =4

4 rw=randwrite

5 blocksize =32k

6 direct =0

7 size =64m

8 numjobs =4

Michael Kuhn Performance Analysis 16 / 46

Example: fio. . . Performance Measurement

• fio also supports trace replay
• That is, fio can execute access patterns recorded in a log
• Makes it possible to generate I/O load without application
• Easier to compare systems with different software environments

• Especially useful for complex real-world applications
• Many dependencies, hard to compile and execute

• Supports blktrace and its own format
• blktrace format is binary
• fio format is plain text and can be generated easily

• write_iolog and read_iolog can be used for logging

Michael Kuhn Performance Analysis 17 / 46

Example: IOR [IOR Developers, 2021] Performance Measurement

• IOR supports parallel I/O across different nodes
• fio only allows multiple processes on a single node
• Parallel distributed file systems require multiple nodes

• IOR supports multiple backends
• Dummy, HDF5, HDFS, IME, mmap, MPI-IO, Parallel-NetCDF, POSIX, RADOS, S3 etc.

• There is supports for different I/O modes
• Shared or process-local files
• Processes can be reordered to circumvent the cache

• For instance, client X writes data, client X+n reads data

Michael Kuhn Performance Analysis 18 / 46

Example: IOR. . . Performance Measurement

• Data is written using MPI-IO
• Other interfaces provided by backends
• Reading is disabled, file is deleted afterwards

• All processes access a shared file
• Processes use an access size of 1 MiB
• Each process is responsible for a block of 1 GiB
• File is split up into 10 segments
• Everything is repeated three times

• Also possible to specify using command line

1 IOR START

2 api=MPIIO

3 testFile =/path/to/file

4 repetitions =3

5 readFile =0

6 writeFile =1

7 filePerProc =0

8 keepFile =0

9 segmentCount =10

10 blockSize =1g

11 transferSize =1m

12 RUN

13 IOR STOP

Michael Kuhn Performance Analysis 19 / 46

Example: IOR. . . [Shan and Shalf, 2007] Performance Measurement

• File structure inspired by real-world
scientific applications

• Accesses happen with transfer size
• Processes access blocks exclusively
• Segments represent time steps etc.

• All processes access one shared file
• Alternatively, one file per process

Michael Kuhn Performance Analysis 20 / 46

Example: mdtest Performance Measurement

• Most benchmarks measure data throughput
• Metadata performance is an important factor

• mdtest uses MPI for parallel metadata access
• Uses the same backends as IOR to perform operations
• Supported functionality very similar to IOR

• Split up into multiple phases
• Creating, writing, getting status, reading, removing etc.

• Uses a hierarchical directory structure
• Multiple root directories to test several metadata servers

Michael Kuhn Performance Analysis 21 / 46

Tools Performance Measurement

• Multitude of benchmarks for vastly different use cases
• Typically focused on either data or metadata

• Results are often not easily comparable
• Different access patterns
• Different computation of results
• Different behavior (synchronization, locking etc.)

• Results can be hard to interpret
• MB vs. MiB (difference of ≈ 10 % for TB/s)

Michael Kuhn Performance Analysis 22 / 46

Tools. . . Performance Measurement

• Benchmarks only allow us to measure the current performance
• They cannot tell us reasons for performance problems etc.
• Benchmarks do not necessarily use realistic I/O patterns

• Analysis and optimization require additional tools
• We need to be able to get an insight into the inner workings
• Tracing is often used to record all activity (Score-P)

• Abstracted performance metrics are sometimes enough to get an overview
• For instance, we can characterize the I/O behavior (Darshan)

Michael Kuhn Performance Analysis 23 / 46

Example: Darshan Performance Measurement

• Darshan is a tool to characterize I/O behavior
• Sanskrit for “sight” or “vision”

• We want to get a useful picture of application I/O
• This includes information about I/O patterns
• Overhead should be as low as possible to not influence behavior

• Darshan is designed for permanent use
• Tested with applications using more than 750,000 cores

• Solid support for MPICH
• Developed at Argonne National Laboratory
• Group that also develops OrangeFS, MPICH and ROMIO

Michael Kuhn Performance Analysis 24 / 46

Example: Darshan. . . Performance Measurement

• Darshan consists of two parts
• Runtime and analysis tools

• Runtime records the application’s I/O
• Has to be compiled for a specific MPI implementation
• Supports options for batch schedulers and a shared log directory
• Offers compiler wrappers and a preload library libdarshan.so

• Tools analyze the recorded application logs
• darshan-job-summary.pl, darshan-parser etc.

Michael Kuhn Performance Analysis 25 / 46

Example: Darshan. . . Performance Measurement

• Assume an MPI-parallelized POSIX benchmark with ten processes
• First a write phase, followed by a read phase

• Both phases are separated by barriers

• Use a block size of 1 MiB

• Write or read 100 blocks in total

• Cache is dropped in between the phases

• echo 3 > /proc/sys/vm/drop_caches

• fsync is called before closing the file

• Only after writing, file is re-opened for reading

• The whole process is repeated three times

Michael Kuhn Performance Analysis 26 / 46

Example: Darshan. . . Performance Measurement

• Darshan aggregates operations
• According to interface and operation type

• Benchmark does no computation
• “Other” is still very high
• Likely due to barriers etc.

Michael Kuhn Performance Analysis 27 / 46

Example: Darshan. . . Performance Measurement

• 3,000 read and write operations
• 10 processes × 100 operations
× 3 repetitions

• 60 open operations
• 10 processes × 2 phases × 3 repetitions

• 30 sync operations
• 10 processes × 3 repetitions

Michael Kuhn Performance Analysis 28 / 46

Example: Darshan. . . Performance Measurement

• All operations have 1 MiB size
• No operations are split up

• Small accesses would hint at inefficient I/O

Michael Kuhn Performance Analysis 29 / 46

Example: Darshan. . . Performance Measurement

• Darshan can differentiate access patterns

• Sequential
• Accesses with increasing offset

• Consecutive
• Directly adjacent to previous access

Michael Kuhn Performance Analysis 30 / 46

Example: Darshan. . . Performance Measurement

• High-level timeline for I/O operations
• Displays timelines, which can be deceptive due to three repetitions
• Timelines also do not work well for checkpointing

Michael Kuhn Performance Analysis 31 / 46

Example: Darshan. . . Performance Measurement

• Darshan offers a coarse-grained overview of I/O costs
• Characterizes I/O according to access counts, sizes and patterns

• Allows determining whether optimizations are necessary
• More in-depth analyses might be necessary
• Darshan also supports an extended tracing mode (DxT)

Michael Kuhn Performance Analysis 32 / 46

Outline

Performance Analysis

Review

Introduction

Performance Measurement

Performance Assessment

Summary

Introduction Performance Assessment

• Assessing performance by modeling theoretical performance
• Compare Rmax and Rpeak on the TOP500 list

• Requires collecting information about the system
• Which components are involved?
• Which performance characteristics do these components have?

• Often necessary to measure individual components
• Requires a different set of tools

Michael Kuhn Performance Analysis 33 / 46

Example Performance Assessment

• Is this performance good?

• Block size
• Why is 64 KiB better

than 1 MiB for 1 PPN?

• Throughput
• Why is the maximum

1.1 GiB/s?
• Why is write lower

than read?

File System Block Size 1 PPN 6 PPN 12 PPN

Lustre 1 MiB 640 MiB/s 105 MiB/s 110 MiB/s
OrangeFS 1 MiB 160 MiB/s 390 MiB/s 430 MiB/s
OrangeFS 64 KiB 250 MiB/s 115 MiB/s 180 MiB/s

Write

File System Block Size 1 PPN 6 PPN 12 PPN

Lustre 1 MiB 1,095 MiB/s 735 MiB/s 875 MiB/s
OrangeFS 1 MiB 130 MiB/s 265 MiB/s 430 MiB/s
OrangeFS 64 KiB 505 MiB/s 140 MiB/s 195 MiB/s

Read

Michael Kuhn Performance Analysis 34 / 46

Example Performance Assessment

• Is this performance good?

• Block size
• Why is 64 KiB better

than 1 MiB for 1 PPN?

• Throughput
• Why is the maximum

1.1 GiB/s?
• Why is write lower

than read?

File System Block Size 1 PPN 6 PPN 12 PPN

Lustre 1 MiB 640 MiB/s 105 MiB/s 110 MiB/s
OrangeFS 1 MiB 160 MiB/s 390 MiB/s 430 MiB/s
OrangeFS 64 KiB 250 MiB/s 115 MiB/s 180 MiB/s

Write

File System Block Size 1 PPN 6 PPN 12 PPN

Lustre 1 MiB 1,095 MiB/s 735 MiB/s 875 MiB/s
OrangeFS 1 MiB 130 MiB/s 265 MiB/s 430 MiB/s
OrangeFS 64 KiB 505 MiB/s 140 MiB/s 195 MiB/s

Read

Michael Kuhn Performance Analysis 34 / 46

Quiz Performance Assessment

• Which components would you evaluate for a performance assessment?
1. CPUs
2. Main memory
3. Network
4. Storage devices

Michael Kuhn Performance Analysis 35 / 46

Overview Performance Assessment

• Clients: IOPS, RAM throughput,
network connection

• Network: Throughput and latency

• Servers: Throughput and IOPS

Network

Clients

Servers

Michael Kuhn Performance Analysis 36 / 46

Overview Performance Assessment

• Clients: IOPS, RAM throughput,
network connection

• Network: Throughput and latency

• Servers: Throughput and IOPS

Network

Clients

Servers

Michael Kuhn Performance Analysis 36 / 46

Overview Performance Assessment

• Clients: IOPS, RAM throughput,
network connection

• Network: Throughput and latency

• Servers: Throughput and IOPS

Network

Clients

Servers

Michael Kuhn Performance Analysis 36 / 46

Overview Performance Assessment

• Clients: IOPS, RAM throughput,
network connection

• Network: Throughput and latency

• Servers: Throughput and IOPS

Network

Clients

Servers

Michael Kuhn Performance Analysis 36 / 46

Clients Performance Assessment

• I/O operations per second (IOPS)
• Context switches could limit performance

• Throughput and latency of main memory
• Typically not a problem (if we avoid

unnecessary copies)

• Estimate performance using tmpfs and fio

• Idea: Perform many small I/O operations

1 $ mkdir /tmp/fs

2 $ mount -t tmpfs tmpfs /tmp/fs

3 $...

4 $ umount /tmp/fs

Michael Kuhn Performance Analysis 37 / 46

Clients. . . Performance Assessment

• Standard compute nodes

• ≈ 1,000,000 IOPS
• Block size of 1 is important
• 0 could be intercepted by libc

• ≈ 330,000 context switches

• ≈ 4 GiB/s throughput
• Main memory is typically faster
• tmpfs introduces overhead

• No limitations for our previous results

1 $ fio --name=cs \

2 --filename =/tmp/fs/foo \

3 --rw=write --bs=1 \

4 --size=1g --runtime =60 \

5 [--numjobs=n]

6

7 $ vmstat 1

8

9 $ fio --name=bw \

10 --filename =/tmp/fs/foo \

11 --rw=write --bs=1m \

12 --size=5g --runtime =60

Michael Kuhn Performance Analysis 38 / 46

Clients. . . Performance Assessment

• Standard compute nodes

• ≈ 1,000,000 IOPS
• Block size of 1 is important
• 0 could be intercepted by libc

• ≈ 330,000 context switches

• ≈ 4 GiB/s throughput
• Main memory is typically faster
• tmpfs introduces overhead

• No limitations for our previous results

1 $ fio --name=cs \

2 --filename =/tmp/fs/foo \

3 --rw=write --bs=1 \

4 --size=1g --runtime =60 \

5 [--numjobs=n]

6

7 $ vmstat 1

8

9 $ fio --name=bw \

10 --filename =/tmp/fs/foo \

11 --rw=write --bs=1m \

12 --size=5g --runtime =60

Michael Kuhn Performance Analysis 38 / 46

Clients. . . Performance Assessment

• Standard compute nodes

• ≈ 1,000,000 IOPS
• Block size of 1 is important
• 0 could be intercepted by libc

• ≈ 330,000 context switches

• ≈ 4 GiB/s throughput
• Main memory is typically faster
• tmpfs introduces overhead

• No limitations for our previous results

1 $ fio --name=cs \

2 --filename =/tmp/fs/foo \

3 --rw=write --bs=1 \

4 --size=1g --runtime =60 \

5 [--numjobs=n]

6

7 $ vmstat 1

8

9 $ fio --name=bw \

10 --filename =/tmp/fs/foo \

11 --rw=write --bs=1m \

12 --size=5g --runtime =60

Michael Kuhn Performance Analysis 38 / 46

Clients. . . Performance Assessment

• Standard compute nodes

• ≈ 1,000,000 IOPS
• Block size of 1 is important
• 0 could be intercepted by libc

• ≈ 330,000 context switches

• ≈ 4 GiB/s throughput
• Main memory is typically faster
• tmpfs introduces overhead

• No limitations for our previous results

1 $ fio --name=cs \

2 --filename =/tmp/fs/foo \

3 --rw=write --bs=1 \

4 --size=1g --runtime =60 \

5 [--numjobs=n]

6

7 $ vmstat 1

8

9 $ fio --name=bw \

10 --filename =/tmp/fs/foo \

11 --rw=write --bs=1m \

12 --size=5g --runtime =60

Michael Kuhn Performance Analysis 38 / 46

Clients. . . Performance Assessment

• Standard compute nodes

• ≈ 1,000,000 IOPS
• Block size of 1 is important
• 0 could be intercepted by libc

• ≈ 330,000 context switches

• ≈ 4 GiB/s throughput
• Main memory is typically faster
• tmpfs introduces overhead

• No limitations for our previous results

1 $ fio --name=cs \

2 --filename =/tmp/fs/foo \

3 --rw=write --bs=1 \

4 --size=1g --runtime =60 \

5 [--numjobs=n]

6

7 $ vmstat 1

8

9 $ fio --name=bw \

10 --filename =/tmp/fs/foo \

11 --rw=write --bs=1m \

12 --size=5g --runtime =60

Michael Kuhn Performance Analysis 38 / 46

Network Performance Assessment

• Different performance characteristics depending on network
• InfiniBand vs. Ethernet

• Network throughput can become a bottleneck
• Need to be able to saturate storage devices

• Numbers of packets per second
• Important for metadata operations
• Limits performance for many small messages

• Measurements can be done with ping and iperf

Michael Kuhn Performance Analysis 39 / 46

Network. . . Performance Assessment

• Between compute and storage nodes

• Round trip time ≈ 0.100 ms

• Corresponds to ≈ 10,000 messages per second

• Throughput ≈ 110 MiB/s

• Corresponds to 1 Gbit/s Ethernet

• Both could limit our performance

1 $ ping -c 10000 -f $host

2

3 $ iperf --server \

4 --port $port

5

6 $ iperf --client $host \

7 --port $port

Michael Kuhn Performance Analysis 40 / 46

Network. . . Performance Assessment

• Between compute and storage nodes

• Round trip time ≈ 0.100 ms
• Corresponds to ≈ 10,000 messages per second

• Throughput ≈ 110 MiB/s
• Corresponds to 1 Gbit/s Ethernet

• Both could limit our performance

1 $ ping -c 10000 -f $host

2

3 $ iperf --server \

4 --port $port

5

6 $ iperf --client $host \

7 --port $port

Michael Kuhn Performance Analysis 40 / 46

Network. . . Performance Assessment

• Between compute and storage nodes

• Round trip time ≈ 0.100 ms
• Corresponds to ≈ 10,000 messages per second

• Throughput ≈ 110 MiB/s
• Corresponds to 1 Gbit/s Ethernet

• Both could limit our performance

1 $ ping -c 10000 -f $host

2

3 $ iperf --server \

4 --port $port

5

6 $ iperf --client $host \

7 --port $port

Michael Kuhn Performance Analysis 40 / 46

Storage Devices Performance Assessment

• Performance heavily depends on storage technology
• HDD vs. SSD

• Throughput important for data operations
• Should be higher than network throughput to have reserves

• IOPS important for metadata operations
• Also crucial for small random accesses

• Storage bus can be a bottleneck
• SATA devices often support SATA 3.0 (600 MB/s)

Michael Kuhn Performance Analysis 41 / 46

Storage Devices. . . Performance Assessment

• Unbuffered I/O to measure devices
• Avoid page cache influences

• HDDs
• IOPS ≈ 60–80
• Throughput ≈ 120 MiB/s

• SSDs
• IOPS ≈ 15,000

• Outlier ≈ 5,500 (might be garbage collection)

• Throughput ≈ 270 MiB/s

• Faster than network, therefore no limitation

1 $ fio --name=iops \

2 --filename =/dev/sd? \

3 --direct =1 --rw=randread \

4 --bs=4k --size=$size \

5 --runtime =60

6

7 $ fio --name=bw \

8 --filename =/dev/sd? \

9 --direct =1 --rw=read \

10 --bs=1m --size=$size \

11 --runtime =60

Michael Kuhn Performance Analysis 42 / 46

Storage Devices. . . Performance Assessment

• Unbuffered I/O to measure devices
• Avoid page cache influences

• HDDs
• IOPS ≈ 60–80
• Throughput ≈ 120 MiB/s

• SSDs
• IOPS ≈ 15,000

• Outlier ≈ 5,500 (might be garbage collection)

• Throughput ≈ 270 MiB/s

• Faster than network, therefore no limitation

1 $ fio --name=iops \

2 --filename =/dev/sd? \

3 --direct =1 --rw=randread \

4 --bs=4k --size=$size \

5 --runtime =60

6

7 $ fio --name=bw \

8 --filename =/dev/sd? \

9 --direct =1 --rw=read \

10 --bs=1m --size=$size \

11 --runtime =60

Michael Kuhn Performance Analysis 42 / 46

Storage Devices. . . Performance Assessment

• Unbuffered I/O to measure devices
• Avoid page cache influences

• HDDs
• IOPS ≈ 60–80
• Throughput ≈ 120 MiB/s

• SSDs
• IOPS ≈ 15,000

• Outlier ≈ 5,500 (might be garbage collection)

• Throughput ≈ 270 MiB/s

• Faster than network, therefore no limitation

1 $ fio --name=iops \

2 --filename =/dev/sd? \

3 --direct =1 --rw=randread \

4 --bs=4k --size=$size \

5 --runtime =60

6

7 $ fio --name=bw \

8 --filename =/dev/sd? \

9 --direct =1 --rw=read \

10 --bs=1m --size=$size \

11 --runtime =60

Michael Kuhn Performance Analysis 42 / 46

Storage Devices. . . Performance Assessment

• Unbuffered I/O to measure devices
• Avoid page cache influences

• HDDs
• IOPS ≈ 60–80
• Throughput ≈ 120 MiB/s

• SSDs
• IOPS ≈ 15,000

• Outlier ≈ 5,500 (might be garbage collection)

• Throughput ≈ 270 MiB/s

• Faster than network, therefore no limitation

1 $ fio --name=iops \

2 --filename =/dev/sd? \

3 --direct =1 --rw=randread \

4 --bs=4k --size=$size \

5 --runtime =60

6

7 $ fio --name=bw \

8 --filename =/dev/sd? \

9 --direct =1 --rw=read \

10 --bs=1m --size=$size \

11 --runtime =60

Michael Kuhn Performance Analysis 42 / 46

Example Performance Assessment

• Let’s analyze the previous results in more detail
• Lustre and OrangeFS are compared with each other

• Different block sizes are used
• 1 MiB and 64 KiB
• Corresponds to the default stripe size of Lustre and OrangeFS

• Reminder: Network can do 10,000 messages per second
• Results in maximum of 9.8 GiB/s (1 MiB) or 625 MiB/s (64 KiB) per node

• Network throughput determines maximum performance
• We can achieve at most 1,100 MiB/s

Michael Kuhn Performance Analysis 43 / 46

Example. . . Performance Assessment

• Processes per node (PPN)

• Performance degradation with
higher PPN on Lustre

• Shared access to OST
• Reading unproblematic

• Fitting block size works better
for one process per node

• Results in better alignment

• Lustre with 1 PPN hits
network limit

File System Block Size 1 PPN 6 PPN 12 PPN

Lustre 1 MiB 640 MiB/s 105 MiB/s 110 MiB/s
OrangeFS 1 MiB 160 MiB/s 390 MiB/s 430 MiB/s
OrangeFS 64 KiB 250 MiB/s 115 MiB/s 180 MiB/s

Write

File System Block Size 1 PPN 6 PPN 12 PPN

Lustre 1 MiB 1,095 MiB/s 735 MiB/s 875 MiB/s
OrangeFS 1 MiB 130 MiB/s 265 MiB/s 430 MiB/s
OrangeFS 64 KiB 505 MiB/s 140 MiB/s 195 MiB/s

Read

Michael Kuhn Performance Analysis 44 / 46

Example. . . Performance Assessment

• Adapt block size to stripe size
• Divide block size by PPN

• Improves performance
• Writing for Lustre
• Reading for OrangeFS
• OrangeFS with 4 PPN hits

network limit

• Reading anomaly with Lustre
• Higher than network
• Might not stand out without

performance assessment

File System Block Size 1 PPN 4 PPN 8 PPN

Lustre 1/PPN MiB 640 MiB/s 620 MiB/s 605 MiB/s
OrangeFS 64/PPN KiB 250 MiB/s 280 MiB/s 210 MiB/s

Write

File System Block Size 1 PPN 4 PPN 8 PPN

Lustre 1/PPN MiB 1,095 MiB/s 1,800 MiB/s 525 MiB/s
OrangeFS 64/PPN KiB 505 MiB/s 655 MiB/s 455 MiB/s

Read

Michael Kuhn Performance Analysis 45 / 46

Outline

Performance Analysis

Review

Introduction

Performance Measurement

Performance Assessment

Summary

Summary Summary

• Wide range of benchmarks and tools to measure performance
• Different benchmarks cover different use cases and access patterns

• Measurements alone do not say anything about achievable performance
• Performance assessment and modeling are necessary

• Rough performance model is often already good enough
• Determine whether results are realistic, can be refined if necessary

• Actual performance can be unpredictable
• Unexpected side effects such as caching, garbage collection etc.

Michael Kuhn Performance Analysis 46 / 46

References

[Axboe, 2021] Axboe, J. (2021). fio - Flexible IO Tester.
http://git.kernel.dk/?p=fio.git;a=summary.

[IOR Developers, 2021] IOR Developers (2021). IOR - Parallel filesystem I/O benchmark.
https://github.com/hpc/ior.

[Shan and Shalf, 2007] Shan, H. and Shalf, J. (2007). Using IOR to Analyze the I/O
Performance for HPC Platforms. In Cray User Group Conference (CUG’07).

http://git.kernel.dk/?p=fio.git;a=summary
https://github.com/hpc/ior

	Performance Analysis
	Review
	Introduction
	Performance Measurement
	Performance Assessment
	Summary

	Appendix
	References
	

