
Libraries

Parallel Storage Systems
2024-06-03

Prof. Dr. Michael Kuhn
michael.kuhn@ovgu.de

Parallel Computing and I/O
Institute for Intelligent Cooperating Systems
Faculty of Computer Science
Otto von Guericke University Magdeburg
https://parcio.ovgu.de

mailto:michael.kuhn@ovgu.de
https://parcio.ovgu.de

Outline

Libraries

Review

Introduction

Example: SIONlib

Example: NetCDF

Example: HDF

Example: ADIOS

Performance Assessment

Summary

MPI-IO Review

• What happens if a file opened with MPI_MODE_SEQUENTIAL is accessed
non-sequentially?

1. MPI will fall back to regular access without optimization
2. MPI will print a warning
3. Undefined behavior

Michael Kuhn Libraries 1 / 43

MPI-IO Review

• What is the point of collective I/O operations?
1. Synchronize all processes in a communicator
2. Provide additional information for optimizations
3. Order operations by rank

Michael Kuhn Libraries 1 / 43

MPI-IO Review

• Which benefits do non-contiguous I/O operations have?
1. Many small operations are faster to execute
2. Multiple operations can always be merged into a contiguous one
3. Fewer operations cause less overhead

Michael Kuhn Libraries 1 / 43

MPI-IO Review

• Which guarantees does MPI-IO’s semantics provide?
1. Operations can be overlapping and concurrent
2. Operations can be non-overlapping but concurrent
3. Operations can be overlapping but non-concurrent
4. Operations have to be non-overlapping and non-concurrent

Michael Kuhn Libraries 1 / 43

Outline

Libraries

Review

Introduction

Example: SIONlib

Example: NetCDF

Example: HDF

Example: ADIOS

Performance Assessment

Summary

Motivation Introduction

• POSIX and MPI-IO can both be used for parallel I/O
• Both interfaces are not very comfortable to use

• Low-level interfaces are problematic for scientific applications
• Exchangeability of data is important

• POSIX and MPI-IO only offer limited portability

• Implementing parallel I/O is complicated

• Byte- or element-based access is cumbersome

• Achieving high performance is difficult

• In-depth knowledge about storage system is necessary

Michael Kuhn Libraries 2 / 43

Motivation. . . Introduction

• I/O libraries provide additional functionality
• Self-describing data allows exchanging data more easily

• Data can be read and interpreted without prior knowledge

• Internal structuring increases flexibility

• Such data formats allow storing multiple variables

• Abstract I/O definitions make it easier for developers

• I/O calls do not have to be added to the code manually

• Performance problems can be avoided using optimized libraries
• Strict semantics and missing optimizations can degrade performance

Michael Kuhn Libraries 3 / 43

Motivation. . . Introduction

• Benefits
• Data is more portable
• Usability is increased
• Development is made easier

• Drawbacks
• Introduces additional software layers
• Interaction between layers becomes more complex

Michael Kuhn Libraries 4 / 43

Approaches Introduction

• Some libraries are focused on improving performance
• SIONlib

• There are multiple self-describing data formats
• NetCDF (Network Common Data Form)
• HDF (Hierarchical Data Format)

• Abstract I/O definitions are rather special
• ADIOS (Adaptable IO System)

Michael Kuhn Libraries 5 / 43

Outline

Libraries

Review

Introduction

Example: SIONlib

Example: NetCDF

Example: HDF

Example: ADIOS

Performance Assessment

Summary

Overview Example: SIONlib

• SIONlib offers efficient access to process-local files

• Accesses are mapped to one or a few physical files
• Number of files depends on what promises better performance
• Files are aligned to file system’s blocks/stripes

• Access should be as backwards compatible as possible
• Wrappers for fread and fwrite

• Opening and closing files requires special functions

Michael Kuhn Libraries 6 / 43

Quiz Example: SIONlib

• What is the goal of aligning accesses to file system stripes?
1. Bypassing read-modify-write overhead
2. Reducing or eliminating locking overhead
3. Better support for collective I/O operations

Michael Kuhn Libraries 7 / 43

Overview. . . Example: SIONlib

[SIONlib, 2021]

• Data of a process is kept within a file system block
• File system blocks are separated into chunks
• Multiple file system blocks are grouped into a block

• Metablock 1: Static metadata (written on open)

• Metablock 2: Dynamic metadata (written on close)

Michael Kuhn Libraries 8 / 43

Example Example: SIONlib

• numfiles: Number of physical files
(-1 for automatic detection)

• chunksize: Maximum size of a write

• fsblocksize: Size of a file system block
(-1 for automatic detection)

1 int fd;

2 FILE* fp;

3

4 fd = sion_paropen_mpi (..., &numfiles ,

5 ..., &chunksize ,

6 &fsblocksize ,

7 ..., &fp, ...);

8

9 for (...) {

10 fwrite (..., fp);

11 }

12

13 sion_parclose_mpi(fd);

Michael Kuhn Libraries 9 / 43

Functionality Example: SIONlib

• SIONlib offers multiple access modes
• Collective open using sion_paropen_mpi

• Works similar to MPI_File_open

• Individual open using sion_open_rank

• Allows accessing the chunks of a specific process

• Serial access using sion_open and sion_close

• Mapping and alignment are handled intelligently
• Exclusive use of individual file system blocks by processes

• Performance is improved at the cost of potentially unused space due to padding

• Mapping to internal file layout is handled transparently

• Application developers can focus on their problem at hand

Michael Kuhn Libraries 10 / 43

Summary Example: SIONlib

• SIONlib is focused on performance and works around deficiencies in file systems

• Too many files can have negative impacts on performance
• Creating and opening many files requires significant metadata performance
• File systems are typically not designed for large file and directory counts

• Too few files can also degrade performance due to locking
• Necessary to minimize locking using appropriate file layouts and access patterns

Michael Kuhn Libraries 11 / 43

Outline

Libraries

Review

Introduction

Example: SIONlib

Example: NetCDF

Example: HDF

Example: ADIOS

Performance Assessment

Summary

Overview Example: NetCDF

• Developed by the Unidata Program Center
• University Corporation for Atmospheric Research

• Project started in 1989
• Based on NASA’s Common Data Format

• Mainly used in scientific applications
• Most commonly used in climate science, meteorology and oceanography

• Consists of libraries and data formats

Michael Kuhn Libraries 12 / 43

Data Formats Example: NetCDF

• There are four data formats
1. Classical format (CDF-1)
2. Classical format with 64 bit offsets (CDF-2)
3. Classical format with full 64 bit support (CDF-5)
4. NetCDF-4 format

• NetCDF’s data formats are open standards
• CDF-1 and CDF-2 are international standards of the Open Geospatial Consortium

• CDF-1, CDF-2 and CDF-5 are independent formats
• NetCDF-4 uses the underlying HDF5 format

Michael Kuhn Libraries 13 / 43

Parallel I/O Example: NetCDF

• Initially no support for parallel I/O when using CDF-1 and CDF-2
• Lead to the development of Parallel-NetCDF with an incompatible interface

• Since NetCDF-4 there is support for parallel I/O via HDF5
• Parallel I/O was limited to the NetCDF-4 format

• Recent versions support parallel I/O for all formats
• NetCDF-4 is supported via HDF5
• CDF-1, CDF-2 and CDF-5 are supported via Parallel-NetCDF

Michael Kuhn Libraries 14 / 43

Functionality Example: NetCDF

• NetCDF has bindings for a wide range of programming languages
• C, Fortran, C++, Java, R, Perl, Python, Ruby etc.

• Data formats are independent of the used architecture
• Automatic conversion according to endianness etc.

• NetCDF supports groups and variables
• Groups contain variables, variables contain data
• Flat hierarchy since groups cannot contain groups

• Additional attributes can be attached to variables

Michael Kuhn Libraries 15 / 43

Functionality. . . Example: NetCDF

• NetCDF supports multi-dimensional arrays
• char, byte, short, int, float and double

• Since CDF-5: ubyte, ushort, uint, int64 and uint64

• NetCDF-4: ubyte, ushort, uint, int64, uint64 and string

• Dimensions can be arbitrarily large
• Only one unlimited dimension in CDF-1, CDF-2 and CDF-5

• Example: Matrix can only grow in the time dimension

• Multiple unlimited dimensions in NetCDF-4

• Requires a more complex data formats (provided by HDF5)

Michael Kuhn Libraries 16 / 43

Example Example: NetCDF

1 netcdf ... {

2 dimensions:

3 time = UNLIMITED ; // (8760 currently)

4 variables:

5 double time(time) ;

6 string time:units = "days" ;

7 string time:long_name = "Julian_date" ;

8

9 // global attributes:

10 string :Conventions = "None" ;

11 string :creation_date = "Wed Jul 16 12:52:44 CEST 2014" ;

12 }

• ncdump can be used to inspect the data

Michael Kuhn Libraries 17 / 43

Flexibility Example: NetCDF

• There are two major cases when reading data
1. File structure is unknown (different application etc.)

• Available groups and variables have to be determined

2. File structure is known (same application, documentation)

• Groups and variables can be accessed directly using their names

1. File is opened using nc_open

• Parallel access with nc_open_par

2. Group IDs can be queried via nc_inq_ncid

3. Variable IDs can be queried using nc_inq_varid

4. Variables are read with nc_get_var

5. File is closed via nc_close

Michael Kuhn Libraries 18 / 43

Flexibility. . . Example: NetCDF

• Self-describing nature of NetCDF requires two modes
• Define mode: Automatically active after creating a file
• Data mode: Active after opening an existing file

• Define mode allows changing the file’s structure
• For example, adding dimensions, attributes and variables
• Some settings can only be changed directly after definition

• Including compression, endianness, error correction and fill values

• Data mode allows storing data

• NetCDF-4 changes the mode automatically and on demand
• Can be done manually via nc_redef and nc_enddef

Michael Kuhn Libraries 19 / 43

Parallel-NetCDF Example: NetCDF

• Parallel-NetCDF is an alternative implementation for parallel I/O
• Supports CDF-1, CDF-2 and CDF-5

• Developed by Northwestern University and Argonne National Laboratory
• Developer overlap with MPI-IO and OrangeFS

• Interface itself is not compatible with NetCDF
• NetCDF-4 can make use of Parallel-NetCDF

Michael Kuhn Libraries 20 / 43

Outline

Libraries

Review

Introduction

Example: SIONlib

Example: NetCDF

Example: HDF

Example: ADIOS

Performance Assessment

Summary

Overview Example: HDF

• HDF consists of data formats and libraries
• Allows managing self-describing data, similar to NetCDF

• Current version is HDF5
• HDF4 is still actively supported

• Earlier versions had problems with their interface
• Application programming interface was complicated to use
• Limitations like 32 bit offsets etc.

Michael Kuhn Libraries 21 / 43

Overview. . . Example: HDF

• HDF supports groups and data sets
• Data sets store data as multi-dimensional arrays
• Groups can be used to structure the namespace
• Groups and data sets are similar to directories and files

• Groups can contain both data sets and further groups
• Leads to a hierarchical namespace, similar to POSIX

• Attributes can be attached to data sets and groups
• For instance: Physical units, minimum, maximum etc.

Michael Kuhn Libraries 22 / 43

Overview. . . Example: HDF

• Objects can be accessed using POSIX-like paths
• Example: /path/to/dataset
• Path can be used to describe data

• HDF files are self-describing
• Can be opened without a-priori knowledge about the structure and content
• Attributes allow interpreting the actual data

Michael Kuhn Libraries 23 / 43

Overview. . . Example: HDF

• Data sets are multi-dimensional arrays of base data types
• Integer, float, character, bit field, opaque, enumeration, reference, array, variable-length

and compound

• Data sets have certain properties
• Size, precision, endianness etc.

• Arrays can have multiple unlimited dimensions

Michael Kuhn Libraries 24 / 43

Example Example: HDF

1 HDF5 "..." {

2 GROUP "/" {

3 ATTRIBUTE "creation_date" {

4 DATATYPE H5T_STRING {

5 STRSIZE H5T_VARIABLE;

6 STRPAD H5T_STR_NULLTERM;

7 CSET H5T_CSET_ASCII;

8 CTYPE H5T_C_S1;

9 }

10 DATASPACE SIMPLE { (1) / (1) }

11 }

12 }

13 }

• h5dump can be used to inspect the data (like ncdump)

Michael Kuhn Libraries 25 / 43

Language-Specific Storage Example: HDF

• HDF stores data differently depending on the used programming language
• Data is stored row-major (according to the C conventions)
• Fortran data (column-major) is converted automatically

1 2 3

4 5 6

7 8 9

3×3 array

1 2 3 4 5 6 7 8 9

Row-major storage (C)

1 4 7 2 5 8 3 6 9

Column-major storage (Fortran)

Michael Kuhn Libraries 26 / 43

Quiz Example: HDF

• How would you read Fortran data into a C application?
1. Use non-contiguous data types
2. Read sequentially and transpose in memory
3. Read individual elements in row-major order

Michael Kuhn Libraries 27 / 43

Chunking Example: HDF

• Chunking splits up data sets into smaller portions
• Required for features such as compression and other filters

• Chunking allows extending data in all dimensions
• Not easily possible when using contiguous storage

• Enables optimizations not possible when stored contiguously
• Data can be aligned to stripes or allow efficient column-major access

• Chunking also causes some overhead
• Chunk index has to be managed efficiently
• Often results in lower performance than contiguous storage

Michael Kuhn Libraries 28 / 43

Chunking. . . Example: HDF

• Data sets are stored contiguously
• Simple layout with little overhead

• Data set can be extended in one direction
• Other directions can be mapped to a static size

Michael Kuhn Libraries 29 / 43

Chunking. . . Example: HDF

• Data sets are split up into chunks
• Can be extended in multiple directions
• More complex management

• Chunks are read or written completely
• HDF5 uses a chunk cache internally

Michael Kuhn Libraries 30 / 43

Quiz Example: HDF

• Which chunk size would you choose when compressing data?
1. 64 KiB
2. 1 MiB
3. 64 MiB
4. 1 GiB

Michael Kuhn Libraries 31 / 43

Outline

Libraries

Review

Introduction

Example: SIONlib

Example: NetCDF

Example: HDF

Example: ADIOS

Performance Assessment

Summary

Overview Example: ADIOS

• ADIOS provides an abstract I/O interface
• No byte- oder element-based access to data
• ADIOS directly supports application data structures

• ADIOS has been designed for high performance
• It is used in a wide range of scientific applications
• Performance is increased using caching, merging of operations etc.

Michael Kuhn Libraries 32 / 43

Overview. . . Example: ADIOS

• ADIOS1 allows specifying an I/O configuration via an XML file
• XML contains a description of relevant data structures
• Code is automatically generated from this abstract description

• Allows developers to work on a high level of abstraction
• No need for dealing with the middleware or the file system
• Some changes to the I/O configuration do not require a recompilation

Michael Kuhn Libraries 33 / 43

Example Example: ADIOS

1 <adios -config host -language="C">

2 <adios -group name="checkpoint">

3 <var name="rows" type="integer"/>

4 <var name="columns" type="integer"/>

5 <var name="matrix" type="double" dimensions="rows ,columns"/>

6 </adios -group>

7 <method group="checkpoint" method="MPI"/>

8 <buffer size -MB="100" allocate -time="now"/>

9 </adios -config >

• Variables are combined into groups
• Each group can have a separate I/O method

• Allows optionally setting buffer sizes etc.

Michael Kuhn Libraries 34 / 43

Example. . . Example: ADIOS

1 adios_open (&adios_fd , "checkpoint", "checkpoint.bp", "w", MPI_COMM_WORLD);

2 #include "gwrite_checkpoint.ch"

3 adios_close(adios_fd);

• Code is generated by the gpp.py script
• gread_checkpoint.ch and gwrite_checkpoint.ch

• Developers have to include the appropriate header
• Variable names etc. have to match ADIOS’s generated code

Michael Kuhn Libraries 35 / 43

Example. . . Example: ADIOS

1 adios_groupsize = 4 \

2 + 4 \

3 + 8 * (rows) * (columns);

4 adios_group_size (adios_handle , adios_groupsize , &adios_totalsize);

5 adios_write (adios_handle , "rows", &rows);

6 adios_write (adios_handle , "columns", &columns);

7 adios_write (adios_handle , "matrix", matrix);

• Group size determined automatically

• adios_write calls write the actual data
• Write operations are cached as much as possible

Michael Kuhn Libraries 36 / 43

Example. . . Example: ADIOS

1 s = adios_selection_writeblock (rank);

2 adios_schedule_read (fp, s, "matrix", 1, 1, matrix);

3 adios_perform_reads (fp, 1);

4 adios_selection_delete (s);

• Reading is more complex than writing
• Offers additional functionality

• Parts of the data can be selected for reading
• ADIOS then determines the best reading strategy

• Multiple read operations can be scheduled
• Scheduled operations are only queued and later executed in a batch

Michael Kuhn Libraries 37 / 43

Outline

Libraries

Review

Introduction

Example: SIONlib

Example: NetCDF

Example: HDF

Example: ADIOS

Performance Assessment

Summary

Interaction Performance Assessment

• Libraries use underlying interfaces
• Interfaces can be provided by other I/O libraries
• Sometimes depend on multiple interfaces

• Debugging might require knowledge of
dependencies and their optimizations

• Unclear which dependency causes problems

ADIOS

NetCDF

POSIX

HDF

SIONlib

PnetCDF

MPI-IO

Michael Kuhn Libraries 38 / 43

Disjoint [Bartz et al., 2015] Performance Assessment

• Clients are responsible for contiguous blocks of data
• Regions are disjoint to avoid conflicts and locking

• Each client potentially communicates with all servers

Michael Kuhn Libraries 39 / 43

1-OST [Bartz et al., 2015] Performance Assessment

• Each client communicates with exactly one server
• Lower communication overhead and fewer potential conflicts

Michael Kuhn Libraries 40 / 43

Access and Chunk Sizes [Bartz et al., 2015] Performance Assessment

• Performance heavily depends on access and chunk sizes

Michael Kuhn Libraries 41 / 43

Conclusion Performance Assessment

• Interaction between I/O libraries is complex
• Achievable performance cannot be predicted easily
• Potential performance problems and optimizations on all layers
• Analysis is complicated by having to capture all layers

• Optimizations are necessary for almost all storage systems
• HDF5 and SIONlib allow adapting to the file system boundaries

• NetCDF only has limited support for alignment

Michael Kuhn Libraries 42 / 43

Outline

Libraries

Review

Introduction

Example: SIONlib

Example: NetCDF

Example: HDF

Example: ADIOS

Performance Assessment

Summary

Summary Summary

• Low-level I/O interfaces are often not convenient to use
• I/O libraries provide high-level interfaces for structured access
• Annotations and metadata enable exchanging of data

• Zoo of libraries available for different use cases
• Analysis of errors and performance problems is complicated
• SIONlib works around performance problems of current file systems
• NetCDF and HDF provide similar functionality for self-describing data

Michael Kuhn Libraries 43 / 43

References

[Bartz et al., 2015] Bartz, C., Chasapis, K., Kuhn, M., Nerge, P., and Ludwig, T. (2015). A Best
Practice Analysis of HDF5 and NetCDF-4 Using Lustre. In Kunkel, J. M. and Ludwig, T.,
editors, High Performance Computing - 30th International Conference, ISC High Performance 2015,
Frankfurt, Germany, July 12-16, 2015, Proceedings, volume 9137 of Lecture Notes in Computer
Science, pages 274–281. Springer.

[SIONlib, 2021] SIONlib (2021). File Format.
https://apps.fz-juelich.de/jsc/sionlib/docu/fileformat_page.html.

https://apps.fz-juelich.de/jsc/sionlib/docu/fileformat_page.html

NetCDF Libraries

• NetCDF comes with additional features
• Data can be compressed transparently

• Tools expand the usability of NetCDF further
• ncdump comes with NetCDF and allows printing file contents
• NetCDF Operators (NCO) can perform a variety of operations on data

• NetCDF is used as the foundation of further standards
• The Climate Data Interface supports NetCDF and other formats

NetCDF. . . Libraries

1. Create file with nc_create("file.nc", . . . , &ncid)

• Parallel access with nc_create_par

• Backend can be selected with NC_MPIIO or NC_NETCDF4

2. Define dimension with nc_def_dim(ncid, "dim", . . . , &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", . . . , &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", . . .)

6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, . . .)

8. Close file with nc_close(ncid)

NetCDF. . . Libraries

1. Create file with nc_create("file.nc", . . . , &ncid)

• Parallel access with nc_create_par

• Backend can be selected with NC_MPIIO or NC_NETCDF4

2. Define dimension with nc_def_dim(ncid, "dim", . . . , &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", . . . , &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", . . .)

6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, . . .)

8. Close file with nc_close(ncid)

NetCDF. . . Libraries

1. Create file with nc_create("file.nc", . . . , &ncid)

• Parallel access with nc_create_par

• Backend can be selected with NC_MPIIO or NC_NETCDF4

2. Define dimension with nc_def_dim(ncid, "dim", . . . , &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", . . . , &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", . . .)

6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, . . .)

8. Close file with nc_close(ncid)

NetCDF. . . Libraries

1. Create file with nc_create("file.nc", . . . , &ncid)

• Parallel access with nc_create_par

• Backend can be selected with NC_MPIIO or NC_NETCDF4

2. Define dimension with nc_def_dim(ncid, "dim", . . . , &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", . . . , &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", . . .)

6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, . . .)

8. Close file with nc_close(ncid)

NetCDF. . . Libraries

1. Create file with nc_create("file.nc", . . . , &ncid)

• Parallel access with nc_create_par

• Backend can be selected with NC_MPIIO or NC_NETCDF4

2. Define dimension with nc_def_dim(ncid, "dim", . . . , &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", . . . , &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", . . .)

6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, . . .)

8. Close file with nc_close(ncid)

NetCDF. . . Libraries

1. Create file with nc_create("file.nc", . . . , &ncid)

• Parallel access with nc_create_par

• Backend can be selected with NC_MPIIO or NC_NETCDF4

2. Define dimension with nc_def_dim(ncid, "dim", . . . , &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", . . . , &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", . . .)

6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, . . .)

8. Close file with nc_close(ncid)

NetCDF. . . Libraries

1. Create file with nc_create("file.nc", . . . , &ncid)

• Parallel access with nc_create_par

• Backend can be selected with NC_MPIIO or NC_NETCDF4

2. Define dimension with nc_def_dim(ncid, "dim", . . . , &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", . . . , &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", . . .)

6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, . . .)

8. Close file with nc_close(ncid)

NetCDF. . . Libraries

1. Create file with nc_create("file.nc", . . . , &ncid)

• Parallel access with nc_create_par

• Backend can be selected with NC_MPIIO or NC_NETCDF4

2. Define dimension with nc_def_dim(ncid, "dim", . . . , &dimid)

3. Define group with nc_def_grp(ncid, "group", &grpid)

4. Define variable with nc_def_var(grpid, "data", . . . , &varid)

5. Write attribute with nc_put_att_*(grpid, varid, "attr", . . .)

6. Leave define mode with nc_enddef(ncid)

• Performed implicitly with NetCDF-4 format
• Compression, endianness, fill values etc. can only be set on first definition

7. Write variable with nc_put_var_*(grpid, varid, . . .)

8. Close file with nc_close(ncid)

HDF Libraries

• HDF supports multiple backends (Virtual File Layer)
• Used to realize access using POSIX and MPI-IO (and more)

• MPI-IO allows efficient parallel access to shared HDF files

• HDF contains several tools to work with data
• h5dump can be used to print data

• Additional functionality similar to NetCDF
• Transparent compression and user-defined filters

• HDF is under active development
• Virtual Object Layer (VOL) allows alternative storage approaches

• Higher level of abstraction in comparison to the VFL

• Additional features for exascale and cloud

ADIOS Libraries

• ADIOS uses its own file format (Binary Packed)
• BP can be converted to HDF5, NetCDF and ASCII

• ADIOS supports data transformations
• Compression is a common data transformation

• Read operations are scheduled for efficient execution
• Can be used to stage data to different tiers

• Annotations can be used to improve performance further
• adios_{start,stop}_calculation: Marks the calculation phases to allow performing

I/O in parallel to computation
• adios_end_iteration: Provides timing information for flushing data

1-OST to 10-OST [Bartz et al., 2015] Libraries

• Performance varies depending on the number of servers to contact

	Libraries
	Review
	Introduction
	Example: SIONlib
	Example: NetCDF
	Example: HDF
	Example: ADIOS
	Performance Assessment
	Summary

	Appendix
	References
	

	Bonus
	Libraries

