
Exercise Sheet 2 for Lecture Parallel Programming
Deadline: 2024-05-05, 23:59

Prof. Dr. Michael Kuhn (michael.kuhn@ovgu.de)
Michael Blesel (michael.blesel@ovgu.de)

Parallel Computing and I/O • Institute for Intelligent Cooperating Systems
Faculty of Computer Science • Otto von Guericke University Magdeburg

https://parcio.ovgu.de

1. Debugging C Applications (120 Points)

To be able to concentrate on efficient programming, we first want to look into the debugging of
(parallel) applications. Therefore, we will work with the GNU debugger GDB and the memory
checker memcheck from the Valgrind tool suite in this task. Both of these tools are usable for
serial and parallel applications. Memory allocation is very error-prone in C and Valgrind can
help detect common errors in memory management.

First Steps

The simple directory contains a simple application that can be compiled with make.1 This
application will be used for you to familiarize yourself with GDB and Valgrind. It contains four
functions, which return a pointer to an array or to a value inside an array and a main function
that outputs the returned values. Unfortunately, this application contains multiple errors.

• Perform the following small tasks to get familiar with GDB. Document the used gdb

commands and the output in a text file. A short GDB tutorial can for example be found
at https://www.cs.cmu.edu/~gilpin/tutorial/.

– Place a breakpoint on the mistake1 function, start the application and print out the
values of buf and buf[2]. Continue to the next line and repeat the printing of both
values. What is the type of buf?

– Place a breakpoint on the mistake2 function and continue the application execution.
What is the type of buf?

– Continue the application execution. What output do you get now? Display the code
around the current line. Which frames are on the stack? Switch to frame 1. Print
out the contents of p.

– Call the mistake3 function in GDB (look up how to call functions directly).

• Firstly, modify the application so that it does not crash anymore. Try to keep the amount
of code modifications to a minimum. Use gdb to find the errors in the code. The correct
application output should look like this:

1For an introduction into Makefiles, see http://swcarpentry.github.io/make-novice/.

1

mailto:michael.kuhn@ovgu.de
mailto:michael.blesel@ovgu.de
https://parcio.ovgu.de
https://www.cs.cmu.edu/~gilpin/tutorial/
http://swcarpentry.github.io/make-novice/


1:␣1

2:␣2

3:␣3

• Now the application is running, but it still contains memory errors that can occur (more or
less at random) depending on the environment. Use Valgrind’s memcheck tool to find the
memory management errors and modify the application so that every function allocates
memory correctly and that all memory is freed correctly before the termination of the
application. Execute the program using valgrind ./simple.

Note: Simply allocating the memory with static is not allowed. Also, global arrays and
variables are not to be used. A short introduction to valgrind can for example be found
at https://www.valgrind.org/docs/manual/quick-start.html.

Document the errors that cause application crashes and memory errors. For every error, state
the corresponding lines of code that are erroneous and explain the reasons for the error (for
example, multiple freeing of same memory).

2. Debugging of a Complex Application (120 Points)

In the pde directory you will find a program for solving partial differential equations. The basic
structure of the program is correct but it contains some small errors. To fix the program you
do not have to undestand what exactly is being caluclated, but it can help to step through the
program with a debugger to get a better understanding of what is happening. Fix all errors in
the program and modify only as little code as necessary. Remember to also check for memory
errors by using Valgrind.

The program shall be run with the following command ./partdiff 1 1 100 2 5

Submission

We will count your last commit on the main branch of your repository before the exercise
deadline as your submission. In the root directory of the repository, we expect a PP-2024-

Exercise-02-Materials directory with the following contents:

• A file group.txt with your group members (one per line) in the following format:

Erika Musterfrau <erika.musterfrau@example.com>

Max Mustermann <max.mustermann@example.com>

• A text file with the input and output for GDB called gdb-output.txt, a text file with
error descriptions (reasons, code locations) called simple-error.txt and the modified
source code in a directory called simple (Task 1)

• A text file pde-error.txt with error descriptions (reasons, code locations) and the modi-
fied source code in a directory called pde (Task 2)

2

https://www.valgrind.org/docs/manual/quick-start.html

	Debugging C Applications (120 Points)
	Debugging of a Complex Application (120 Points)

