
Exercise Sheet 2 for Lecture Parallel Storage Systems
Deadline: 2024-05-07, 23:59

Prof. Dr. Michael Kuhn (michael.kuhn@ovgu.de)
Michael Blesel (michael.blesel@ovgu.de)

Parallel Computing and I/O • Institute for Intelligent Cooperating Systems
Faculty of Computer Science • Otto von Guericke University Magdeburg

https://parcio.ovgu.de

In this exercise sheet, you will practice the debugging of C applications with GDB and write
your first application performing I/O.

1. Debugging C Applications (150 Bonus Points)

To be able to concentrate on efficient programming, we first want to look into the debugging of
(parallel) applications. Therefore, we will work with the GNU debugger GDB and the memory
checker memcheck from the Valgrind tool suite in this task. Both of these tools are usable for
serial and parallel applications. Memory allocation is very error-prone in C and Valgrind can
help detect common errors in memory management.

First Steps

The simple directory contains a simple application that can be compiled with make.1 This
application will be used for you to familiarize yourself with GDB and Valgrind. It contains four
functions, which return a pointer to an array or to a value inside an array and a main function
that outputs the returned values. Unfortunately, this application contains multiple errors.

• Perform the following small tasks to get familiar with GDB. Document the used gdb

commands and the output in a text file. A short GDB tutorial can for example be found
at https://www.cs.cmu.edu/~gilpin/tutorial/.

– Place a breakpoint on the mistake1 function, start the application and print out the
values of buf and buf[2]. Continue to the next line and repeat the printing of both
values. What is the type of buf?

– Place a breakpoint on the mistake2 function and continue the application execution.
What is the type of buf?

– Continue the application execution. What output do you get now? Display the code
around the current line. Which frames are on the stack? Switch to frame 1. Print
out the contents of p.

– Call the mistake3 function in GDB (look up how to call functions directly).

1For an introduction into Makefiles, see http://swcarpentry.github.io/make-novice/.

1

mailto:michael.kuhn@ovgu.de
mailto:michael.blesel@ovgu.de
https://parcio.ovgu.de
https://www.cs.cmu.edu/~gilpin/tutorial/
http://swcarpentry.github.io/make-novice/


• Firstly, modify the application so that it does not crash anymore. Try to keep the amount
of code modifications to a minimum. Use gdb to find the errors in the code. The correct
application output should look like this:

1:␣1

2:␣2

3:␣3

• Now the application is running, but it still contains memory errors that can occur (more or
less at random) depending on the environment. Use Valgrind’s memcheck tool to find the
memory management errors and modify the application so that every function allocates
memory correctly and that all memory is freed correctly before the termination of the
application. Execute the program using valgrind ./simple.

Note: Simply allocating the memory with static is not allowed. Also, global arrays and
variables are not to be used. A short introduction to valgrind can for example be found
at https://www.valgrind.org/docs/manual/quick-start.html.

Document the errors that cause application crashes and memory errors. For every error, state
the corresponding lines of code that are erroneous and explain the reasons for the error (for
example, multiple freeing of same memory).

2. Checkpoints

In the following task, you are supposed to make yourself familiar with the basic read and
write operations in C. In the materials from the website you will find a checkpoint application.
It contains a calculate function, which iteratively performs mathematical operations on a
matrix. To execute the application, the number of threads and the iteration count have to be
given as arguments.

In the output, you can see statistics about the application run like the used time, the throughput
and the IOPS (I/O operations per second).

2.1. Writing Checkpoints (120 Points)

Modify the given application in a way that in every iteration a checkpoint file matrix.out

is written. The writing process shall be done in parallel by all threads. The values of the
matrix shall be overwritten in each iteration. To implement this look into the write and pwrite

functions und consider the parallel environment (hint: thread-safety). Briefly describe how
both functions work and explain your choice for this task. Integrate a header in the output file
that contains the invocation parameters of the application:

• 𝑇 : Threads

• 𝐼 : Iterations

• 𝐼𝑐: The number of the last written iteration

2

https://www.valgrind.org/docs/manual/quick-start.html


Additionally, implement the calculations for the reached throughput and IOPS. Think about
whether it is sensible to calculate the throughput and IOPS based on the total runtime or only
based on the time needed for I/O operations. Give a short rationale for your chosen method.

2.2. Reading Checkpoints (60 Points)

The matrix is currently initialized with predefined static values. Implement the given read_-

matrix function. Extend the input parameters for this by adding a path to a matrix.out file. If
no path is given or if the file does not exist the matrix shall be initialized statically as before.
Think about appropriate error handling.

Lets look at two application runs 𝐿1 and 𝐿2 with their respective input parameters 𝑇1, 𝐼1, 𝑇2
and 𝐼2. 𝐿1 has already finished and has written a checkpoint with the values for 𝑇1, 𝐼1 and 𝐼𝑐
in the header. Now 𝐿2 shall be run. The checkpoint written by 𝐿1 shall be the used as input
by 𝐿2. Initially the header shall be analyzed and the following scenarios have to be taken into
account:

1. 𝑇1 ≠ 𝑇2, where the matrix size is not dependent on the number of threads.

2. 𝐼𝑐 < 𝐼1

3. 𝐼𝑐 = 𝐼1 and 𝐼1 ≥ 𝐼2

4. 𝐼𝑐 = 𝐼1 and 𝐼1 < 𝐼2

Think about and implement appropriate procedures for the first three mentioned cases. Provide
explanations for your decisions.

For the last case, implement the reading of the values from the last written iteration. The
current run (𝐿2) shall initialize the matrix with those values und continue the calculations from
the next iteration (𝐼𝑐 + 1).

2.3. Atomic Checkpoints (60 Points)

Implement the atomic writing of checkpoints. This means that even in the case of a crash
during checkpoint creation the checkpoint must still be in a consistent state. In this context
consistent means that the written values are all from the same iteration and that 𝐼𝑐 shows the
correct iteration number for these values. Discuss the pros and cons of two possible solutions
for this task.

Submission

We will count your last commit on the main branch of your repository before the exercise
deadline as your submission. In the root directory of the repository, we expect a PSS-2024-

Exercise-02-Materials directory with the following contents:

• A file group.txt with your group members (one per line) in the following format:

3



Erika Musterfrau <erika.musterfrau@example.com>

Max Mustermann <max.mustermann@example.com>

• A text file with the input and output for GDB called gdb-output.txt, a text file with
error descriptions (reasons, code locations) called simple-error.txt and the modified
source code in a directory called simple (Task 1)

• A text file with the answers for the questions called checkpoint-answers.txt and the
modified source code in a directory called checkpoint (Task 2)

4


	Debugging C Applications (150 Bonus Points)
	Checkpoints
	Writing Checkpoints (120 Points)
	Reading Checkpoints (60 Points)
	Atomic Checkpoints (60 Points)


