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This exercise sheet will give you the opportunity to take your first steps in programming
with MPI. You will use this knowledge for the coming exercise sheets to solve more complex
problems with MPI.

Include the mpi.h header and use the mpicc compiler. To get access to the MPI compiler on the
cluster, you need to load the software stack via the following command.

. /opt/spack/pp -2024/ env.sh

You can find a tutorial for programming with MPI at:

https://hpc-tutorials.llnl.gov/mpi/

1. The First MPI Program (180 Points)

Create an MPI program timempi in C which creates the following output:

HOSTNAME: TIMESTAMP

HOSTNAME: Short hostname of the system that is executing the program.

TIMESTAMP: Timestamp of the time when the program is executed with a precision of at least
microseconds.

The program shall adhere to the following requirements:

• The processes with ranks 1 to n shall create the string HOSTNAME: TIMESTAMP and send it
as a string via MPI to the rank 0 process, which will take care of all the output of the
program. Rank 0 shall not create and output its own string.
(Hint: Take a look at the gethostname() and gettimeofday() functions. In the materials,
you can find timestamp.c with an example for the timestamp creation.)

• The output shall be ordered by process rank.

• Directly after the output of the received string, the process with rank 0 shall additionally
output the smallest microsecond amount out of all processes (including rank 0).
(Hint: Take a look at MPI_Reduce.)

• None of the processes shall terminate before the output has happened. The program is
incorrect if a process could terminate too early!
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• Directly before termination every process shall output a text similar to: “Rank X termi-
nating now!”
(Hint: Take a look at MPI_Barrier.)

• The program must work with an arbitrary amount of processes.

The output could look like the following:

ant13: 2021-11-14 13:15:57.968558

ant14: 2021-11-14 13:15:57.968557

968557

Rank 2 terminating now!

Rank 0 terminating now!

Rank 1 terminating now!

2. Ring Communication with MPI (120 Points)

In the materials, you can find the serial program circle.c. Modify it with the help of MPI in a
way that the parallel version will behave in the following ways:

A one-dimensional array of the length N is distributed as evenly as possible over nprocs and is
initialized with random values (in the range 0–24). N shall be given as the only command line
argument of the program. The values shall be output according to their ordering in the array.
The processes shall create a ring, where every process communicates with its predecessor and
successor (for example, rank 𝑛 with the ranks 𝑛−1 and 𝑛+1). The last process will communicate
with rank 0 and vice versa. In the cirlce function, the processes will exchange their data. In
each loop iteration, each process will send its data to its successor and will receive the data
from its predecessor. This shall happen until the last process has the first array element of the
first process before the loop was entered in the beginning of its array (see Figure 1). If this is
the case, all sub-arrays will be output in order of process ranks and the program terminates.

Take into account the following requirements:

• The program shall work with an arbitrary amount of processes and an arbitrary array
length. The input must be checked for potential errors and the program shall react
appropriately.

• At no point is one process allowed to store the complete array in its memory.

• The termination is not allowed to be dependent on a specific number of loop iterations,
but must be checking for the correct termination condition described above. Take into
account that this condition can happen earlier than after nprocs - 1 iterations, since the
same value can occur more than once (see Figure 1).

• Make sure output is ordered correctly.

• Replace uses of MPI_Send with MPI_Ssend to make sure that the program will work with
arbitrary message sizes. Other operations such as MPI_Isend or MPI_Sendrecv are of
course also allowed.
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Figure 1: Examples of possible program executions, from initialization until termination
(PX stand for process X, i=n for the nth iteration)

Submission

We will count your last commit on the main branch of your repository before the exercise
deadline as your submission. In the root directory of the repository, we expect a PP-2024-

Exercise-06-Materials directory with the following contents:

• A file group.txt with your group members (one per line) in the following format:

Erika Musterfrau <erika.musterfrau@example.com>

Max Mustermann <max.mustermann@example.com>

• The code of the timempi program in the sub-directory timempi (Task 1)

– All code that makes your program (timempi.c); well documented

– A Makefile where make timempi, make clean and make act as expected.

• The modified code of the circle program in the circle sub-directory (Task 2)

– All code that makes your program (circle.c); well documented

– A Makefile where make circle, make circle and make act as expected.
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